

Fries: Fast and Consistent Runtime Reconfiguration in Dataflow Systems with Transactional Guarantees

Zuozhi Wang, **Shengquan Ni**, Avinash Kumar and Chen Li

VLDB 2023, Vancouver, Canada

Big Data Workflows

Motivation: Updating Logic in Big Data Workflows

Example Workflow

Update Logic Case 1: Fixing runtime bugs

Update Logic Case 2: Mitigating surge of input data

Reconfiguration: Updating operator code

How to do reconfigurations?

Baseline 1: Stop and Restart

Pause Data Ingestion.

Wait for workflow to finish current tuples.

Replace the workflow.

Baseline 1: Stop and Restart

Pause Data Ingestion.

Wait for workflow to finish current tuples.

Replace the workflow.

Resume data ingestion.

Disruptive!

Reconfiguration

Wait for processing of all data in Epoch 1

slow!

Challenges

- 1. How to do it **fast**?
- 2. How to guarantee **consistency**?

Fries: a technique to answer those questions!

Challenges

- 1. How to do it **fast**?
- 2. How to guarantee **consistency**?

Data does not block FCMs.

Fast!

Apply new logic on t2, t3...

For multiple operators?

Old FV cannot accept data from new FD. E.g., schema mismatch.

Inconsistent!

Challenges

- 1. How to do it **fast**?
- 2. How to guarantee **consistency**?

A tuple should be processed by the **same** version.

A tuple should be processed by the **same** version.

Data operation: Φ(**tuple**, **operator**)

Function-update operation: μ(**operator**)

Data Transaction **T1** = $[\Phi(t, FG), \Phi(t, FD), \Phi(t, FV)]$

Data Transaction **T1** = $[\Phi(t, FG), \Phi(t, FD), \Phi(t, FV)]$

Function-update Transaction **T2** = { μ (FD), μ (FV)}

Data Transaction **T1** = $[\Phi(t, FG), \Phi(t, FD), \Phi(t, FV)]$

Function-update Transaction **T2** = { μ (FD), μ (FV)}

How to resolve conflicts?

Serial Schedule S1 = [
$$\mu$$
(FD) , μ (FV), Φ (t, FG), Φ (t, FD), Φ (t, FV)]

Guarantees same version!

How to generate consistent schedules?

For a schedule S:

If
$$\Phi(t, FD)$$
 is before $\mu(FD)$, Then $\Phi(t, FV)$ should be before $\mu(FV)$.

Requires synchronization!

Guarantee Reconfiguration Consistency

Each output tuple goes to either C or D

No synchronization needed!

Fries Scheduler

Finding the minimal scope for synchronization!

Experiments

- Implemented on both Flink and Texera.
- 2. Fraud Detection, TPC-DS workflows.
- 3. 10 VMs on Google Cloud.

Benefits of Fast Reconfigurations

Scale out

Our contributions

- Formally defined consistency in reconfiguration.
- Fries: Achieved both **Fast** and **Consistent** reconfigurations.
- Parallel execution, One-to-many operator...

Thank you!

Zuozhi Wang

Shengquan Ni

Avinash Kumar

Chen Li

