
Caching Geospatial Objects in Web Browsers
(Demo Paper)

Taewoo Kim #1, Vidhyasagar Thirumaraiselvan +2, Jianfeng Jia #1, Chen Li #1

University of California, Irvine
1 {taewok2,jianfenj,chenli}@ics.uci.edu, 2 thirumav@uci.edu

ABSTRACT
Map-based services are becoming increasingly important in many
applications. These services often need to show geospatial objects
(e.g., cities and parks) in Web browsers, and being able to retrieve
such objects efficiently is critical to achieving a low response time
for user queries. In this demonstration we present a browser-based
caching technique to store and load geospatial objects on a map
in a Web page. The technique employs a hierarchical structure
to store and index polygons, and does intelligent prefetching and
cache replacement by utilizing the information about the user’s re-
cent browser activities. We demonstrate the usage of the technique
in an application called TwitterMap for visualizing more than 1
billion tweets in real time. We show its effectiveness by using dif-
ferent replacement policies. The technique is implemented as a
general-purpose Javascript library, making it suitable for other ap-
plications as well.

Keywords
Map services, Geospatial objects, Caching, Prefetching, Replace-
ment, TwitterMap

1. INTRODUCTION
Map-based services are becoming increasingly important in many

applications. For example, a Tableau application [12] shows the
history of the U.S. on a map. A MapD demo [6] shows taxi drop-
off locations in New York. Such map services allow users to get
insights of the spatial aspect of the data. Moreover, by linking the
spatial results on the map with other analytical results, they provide
an interactive interface that allow users to explore and visualize the
underlying data. TwitterMap [5] currently developed by our team
supports interactive exploration and visualization of more than 1
billion tweets on a map by allowing users to specify spatial, tem-
poral, and keyword conditions.

As the user explores the map by doing zoom-in, zoom-out, pan-
ning operations, the service needs to efficiently update the interface
with the related geospatial objects in the query region. The inter-
face often shows two types of geospatial objects. The first type
is image tiles, possibly at various levels with different resolutions.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGSPATIAL’17 November 7–10, 2017, Los Angeles Area, CA, USA
c© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5490-5/17/11.

DOI: https://doi.org/10.1145/3139958.3140043

These objects are typically static, with fixed shapes and locations.
The second type is geospatial objects that have various shapes and
distributions at different locations. For instance, in TwitterMap,
a user can type in keywords, specify a time interval, and choose
a spatial region, then the system can show the tweet aggregation
results per state, county, or city for the specified query region sat-
isfying those conditions, while each of these geospatial entities has
its own polygon shape. In order to support interactive exploration
of the underlying tweet data, it is important to answer each such
request efficiently, ideally within one second. It is challenging to
efficiently retrieve the relevant geospatial objects and display them
in the browser, especially when the number of relevant objects is
large and the network bandwidth is limited. It is infeasible to store
all these objects in the browser due to their large number. For in-
stance, in TwitterMap, there are about 30,000 city polygons with a
total size of 50 megabyte in the geoJSON format. Depending on
the network speed, it can take up to seconds or even minutes to
transfer the polygons. Moreover, if the browser needs to render all
the 30,000 polygons using different thematic colors on the page,
the required memory size in the Web page can increase up to one
gigabyte, which can cause the Web page not to be responsive.

In this paper we study how to reduce query-response time by
caching geospatial objects in a Web browser. We focus on the sec-
ond type of objects that have various shapes and region distribu-
tions, making their caching technically more challenging than the
first type. Our proposed technique employs a hierarchical index-
ing structure to store and index polygons inside the browser and
support fast retrieval of polygons matching a query region. It also
supports intelligent prefetching and cache replacement by utilizing
the information about the user’s recent activities in the browser to
predict the next requested region. The technique is implemented as
a general-purpose Javascript library, making it a solution suitable
for many services. We will demonstrate the technique using the
TwitterMap service. Figure 1 shows a screenshot of its interface.

1.1 Related Work
There is existing research on server-side caching in map-based

Web services [10, 13]. These techniques are not suitable for our
setting since we focus on caching in the Web browser to reduce
the communication cost between the frontend and the backend.
This setting requires techniques based on Javascript that runs in-
side a Web browser. The general-purpose browser-level Web stor-
age [8, 7] allows a Web page to maintain a key-value database in
the browser, whereas a geospatial query often involves a search re-
gion that is different from the key-value search interface. Our cache
technique is able to efficiently retrieve the matching geospatial ob-
jects by a multi-dimensional spatial range query. There are also
several front-end spatial index solutions, e.g., [11], to store com-
plex spatial objects. We use one of these solutions as part of our

https://doi.org/10.1145/3139958.3140043

Figure 1: TwitterMap to support interactive exploration and visualization on more than 1 billion tweets.

technique. In addition, since the resources in a Web browser can
be limited, besides storing the objects, we also need cache replace-
ment to keep track of the resource usage. Our technique includes
a replacement strategy that can remove irrelevant objects to reduce
the memory consumption in the browser. Furthermore, it also in-
cludes a prefetching strategy that preloads potentially useful ob-
jects by examining the previous activities in the browser. Different
from the existing prefetching strategies [9] that use complex proba-
bility models on the server side, our approach is lightweight, hence
is more suitable for Web browsers.

2. CACHING GEOSPATIAL OBJECTS
In this section, we describe the proposed technique, including a

system architecture where it can be used, and cache replacement
and prefetching. We use the TwitterMap application as an example
to illustrate this technique.

2.1 System Architecture
Figure 2 shows the architecture of a map system that can adopt

the proposed technique. There are three main modules in the archi-
tecture: a cache module, a map connector, and a backend server.
The cache module consists of a manager and a store. The cache
manager is responsible for handling requests from the map connec-
tor. It also conducts replacement and prefetching activities. The
cache store keeps cached geospatial polygons in an R-tree as well
as the user’s recently requested regions. It also keeps the entire
cached region as one polygon. The purpose of keeping this region
is to determine whether a new query region is a cache hit or miss.
The map connector is responsible for presenting the map data along
with geospatial polygons on the map. The backend module, which
is a database or a web server, provides geospatial polygon data.

In TwitterMap, the cache module along with the map connector
is written using Angular JS [4], and they both reside in the user’s
Web browser. The map connector uses the OpenStreetMap API [2]
to fetch image tiles. Without the cache module, the map connector
module always needs to communicate with the backend directly to

Figure 2: System architecture

retrieve geospatial polygons whenever it receives a user request. If
the cache module is present, as we see in Figure 2, all of the map
region requests now go through the cache module. For conduct-
ing geospatial operations such as intersection to find whether the
requested region is contained in the cache store, we use the TURF
library [3]. We define a cache hit when the requested region is in
the cache store. In this case, the cache module returns the geospa-
tial polygons stored in that region to the map connector module. If
the region is not present, the cache module sends a request to the
backend to fetch the geospatial polygons in that region that are not
cached. It first stores the geospatial polygons in the region to the
in-memory R-tree in its store. When sending a request to the back-
end, the cache module prefetches some additional regions to the
current region from the map connector to increase the possibility

of a cache hit in the future. We will discuss this prefetching policy
in detail.

2.2 Indexing Using R-tree
To store and access geospatial polygons, we use an in-memory

R-tree, implemented as a Javascript library called RBush [11]. We
store the geoJSON [1] format of each polygon in the R-tree by
using the minimum bounding rectangle (MBR) of each polygon
as its key and geoJSON-formatted data as its value so that we can
retrieve the original polygon data, not just its MBR. Figure 3 shows
a part of a city’s geoJSON data.

{
"type":"FeatureCollection",
"features":[

{"type":"Feature","geometry":{
"type":"Polygon", "coordinates":

[[[-73.868917,40.69515],
,[-73.868917,40.69515]]]},
"properties":{
"stateID":36, "stateName":"New York",
"countyID":36047, "countyName":"Kings",
"cityID":36047, "name":"Brooklyn" }

}]
}

Figure 3: A part of sample city’s geoJSON data

2.3 Cache Hit or Cache Miss
The cache store always keeps track of the entire shape of the

cached region as a polygon after each operation. When the user’s
requested region (represented as a rectangle) is passed to the cache
module, the module computes the spatial difference between them.
If the requested region is contained in the cached region, we have
a cache hit. In this case, the cache module provides the geospatial
polygons in the R-tree. Otherwise, it is a cache miss, and the cache
module inserts geospatial polygons into the R-tree after fetching
them from the backend. Cache replacement, if needed, happens
before geospatial polygons are inserted to the R-tree.

2.4 Cache Replacement
In case of a cache miss, the cache module fetches geospatial

polygons from the backend, and tries to save them to its store first
before returning them to the map connector. When this attempt
fails due to limited space in the store, some of the cached regions
need to be evicted. Figure 4 shows an eviction case when there is a
cache miss.

Figure 4: Cache replacement

In this case, the module first identifies the direction of the user’s
current request based on previous requests, i.e., where the user is
heading on the map. Using the identified direction, it finds the
farthest region in the cached store. It evenly divides the distance
between that region and the current region into a certain number
of parts. For example, we can divide the distance into a number
of chunks, e.g., 10. The module starts evicting the farthest chunk
first, based on the user’s request trend since we deal with the user’s
current request on a geospatial object. We assume the spatial infor-
mation is relatively more important than the temporal information.
That is, rather than considering the time that a geospatial polygon
was added to the cache store, we put the priority on the trend of
the request and the distance between the current request and the
trajectory of the user’s recent requests (instead of using LRU). For
example, the oldest region in the cache store can be the nearest
region to the current request. Then, we do not want to evict that
region. Also, we do not simply evict the farthest region from the
current request region since the user’s trend history plays a role
here. For example, if the current request is heading towards the far-
thest region in the cache store, it is better to keep that region since
it might be requested soon. Therefore, we consider the trend of
the current request to decide the direction of user’s request history
and then remove the farthest region based on that trend. If there
is still not enough space after an eviction, it evicts the second far-
thest chunk. This process continues until it consumes all chunks
or it gets enough space to store geospatial polygons in the current
request. If it consumes all chunks and still does not find enough
space, then all of the cache regions will be cleared.

2.5 Cache Prefetching
To increase the possibility of cache hit, we do prefetching when-

ever there is a cache miss due to two reasons. First, we fetch ad-
ditional regions the user may choose in the next request based on
the trajectory of their recent requests. Second, fetching these re-
gions does not significantly increase the communication cost, since
the cache module needs to talk to the backend anyway to fetch the
geospatial polygons of the current region. The additional regions
are calculated based on the trend of recent requests. This trend can
be calculated in many ways. For instance, as shown in Figure 5,
we can calculate the trend based on the previous request and the
current request. Specifically, we find the centroids of two requests
and form a line by connecting them. After that, we compute the
slope of the line and extend the line beyond the edge of the current
request for a certain distance (e.g., 25 miles). The yellow region in
the figure depicts the prefetched region for this case. For example,
if we know that the current user is moving towards to northeast, we
fetch more regions in that direction.

Figure 5: Prefetching

3. DEMONSTRATION
In the demo, we will show how the technique works for various

user requests on the TwitterMap application. Normally, Twittermap
does not show any of cache-related activities such as cache miss,
hit, or prefetching. For demonstration purposes, we modify the
frontend to display such activities using certain colors.

3.1 Cache Hit
Figure 6 shows the TwitterMap interface after several requests

have been made from a single user on the map. The cached regions
are displayed in the blue color. It shows a case where the current
request is fetching the already cached region, which is a cache hit.
We visualize the given cache-hit case using the green color. We
also visualize the city polygons in the requested region in the black
color for illustration purposes. Normally, what happens underneath
is that the cache module returns the stored city polygons to the map
connector without communicating with the backend. This is the
reason why there is no prefetching in a cache-hit case, since we
do not want to incur communication cost just to execute a prefetch
operation.

Figure 6: Cache hit case

3.2 Cache Miss and Prefetching
Figure 7 shows two cache-miss cases. Figure 7a shows a cache

miss without an eviction and Figure 7b shows a cache miss with an
eviction. The request (in red) in Figure 7a was sent to the system
and the request in Figure 7b was sent to the system right after that.

As described earlier, when there is a cache miss, the cache mod-
ule fetches city polygons in the requested region from the backend.
It also prefetches some additional regions (in yellow) to prepare for
the future requests from the user. From both figures, we can see that
the trend angle is towards southwest. Therefore, we can see that the
prefetched region is placed around the boundary of that side in the
current request region. Figure 7b also illustrates an eviction case.
We can see that the some of the northeast region (in the gray box)
is evicted from the cache store to accommodate the city polygons
for the current request.

In the demonstration, we will show the behavior of the tech-
nique in terms of cache replacement, prefetching, cache hit, and
cache miss. We will illustrate how the technique can reduce query
response time. We will also show the effect of changing those pa-
rameters, such as cache size, number of recent requests to decide
the prefetching direction, and size of prefetching region. These
features will be illustrated by both user interactions as well as au-
tomated simulation using an animation script.

Acknowledgements This work has been supported by NIH award
1U01HG008488-01 and NSF CNS award 1305430. We thank the

(a) A cache miss without an eviction

(b) The next request - a cache miss with an eviction

Figure 7: Two cache-miss cases

Cloudberry research team at UC Irvine for many technical and
fruitful discussions.

4. REFERENCES
[1] Geojson. https://geojson.org/.
[2] Openstreetmap. https://www.openstreetmap.org/.
[3] Turf library. https://turfjs.org/.
[4] Angular JS, https://angularjs.org.
[5] J. Jia, C. Li, X. Zhang, C. Li, M. J. Carey, and S. Su. Towards

interactive analytics and visualization on one billion tweets.
In Proceedings of the 24th ACM SIGSPATIAL International
Conference on Advances in Geographic Information
Systems, GIS 2016, Burlingame, California, USA, October
31 - November 3, 2016, pages 85:1–85:4, 2016.

[6] Mapd demo. https://www.mapd.com/demos/taxis.
[7] J. Mickens. Silo: Exploiting javascript and DOM storage for

faster page loads. In USENIX Conference on Web
Application Development, WebApps’10, Boston,
Massachusetts, USA, June 23-24, 2010, 2010.

[8] M. D. Network. Dom storage. 23, 2011.
https://developer.mozilla.org/en/DOM/Storage.

[9] D.-J. Park and H.-J. Kim. Prefetch policies for large objects
in a web-enabled gis application. Data & Knowledge
Engineering, 37(1):65–84, 2001.

[10] S. Podlipnig and L. Böszörmenyi. A survey of web cache
replacement strategies. ACM Computing Surveys (CSUR),
35(4):374–398, 2003.

[11] RBush Javascript Library, https://github.com/mourner/rbush.
[12] Tableau demo.

https://public.tableau.com/en-us/s/gallery/history-us.
[13] L. Zhang, S. Floyd, and V. Jacobson. Adaptive web caching.

In NLANR Web Cache Workshop, volume 97, 1997.

	Introduction
	Related Work

	Caching Geospatial Objects
	System Architecture
	Indexing Using R-tree
	Cache Hit or Cache Miss
	Cache Replacement
	Cache Prefetching

	Demonstration
	Cache Hit
	Cache Miss and Prefetching

	References

