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Dataflow tasks can be complex
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User-defined Functions are common!
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Consider a running example workflow
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Execution of the example workflow
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Data transformation between language VMs
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Runtime Bugs in UDF code

i) Data errors: If the lat field is absent from the input tweet, the r_tree.query() function 
may raise exceptions or return empty results. 

ii) Code errors: The for-loop gradually increases the search radius to find the closest city 
but does not terminate after a city is found. Thus the loop may continue and identify 
another city when a larger radius is provided, leading to an incorrect output. 
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Runtime Language Debuggers

Python debuggers:

• pdb (The standard CPython debugger)

• PyDev.Debugger

breakpoint-lookup table

file_name line_no

geo_tagger.py 6

… …
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Breakpoint check

Breakpoint check

Breakpoint check

breakpoint-lookup table

file_name line_no

geo_tagger.py 6

… …

Debugger

Hit! 



How to integrate a language debugger into a 
data engine?
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Approach 1: The Debugger Runs Separately from the Engine

Coordinator

Debugger

Debugger Front-end

Debug 

Instructions

Debug 

Session

Control Instructions

import pydevd_pycharm 
pydevd_pycharm.settrace('localhost', port=6789)

PyFlink’s recommended UDF debugging:
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Approach 1: The Debugger Runs Separately from the Engine

Coordinator

Debugger

Debugger Front-end

Debug 

Instructions

Debug 

Session

Control Instructions

Limitations:
1. Unresponsiveness caused by two control sources. 
2. Uncontrolled workflow suspension. 
3. Lack of synchronization between multiple debuggers. 
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Approach 2: The Engine Controls the Debugger 

Advantages:
1. A single source of control.

2. Coordinated workflow suspension.

3. Supporting synchronization between multiple debuggers.

Coordinator Control Instructions

Debug Instructions
Debugger Front-end

Debugger
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Debug-aware Coordinator

Texera 

Workflow

 Web GUI

Execution 

Engine

Workflow with UDF
UDF 

Code Editor

Debugger 

Frontend

Debug-aware Coordinator

Built-in 

Operator UDF Operator

Debugger

UDF Operator

Debugger …

…

Users

Machine

Cluster
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How to send a debug instruction to a UDF?
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A Novel UDF Execution Model: Two-threaded execution model

Coordinator

Set Bp Bp Hit! Continue

Write Read Write

Read Write Read

Suspended

CP Thread

Shared 

Variables

DP Thread

with debugger 

Debug Instruction Time

UDF Line Debugger

To receive debug instructions dynamically.
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Pass debug instructions between threads

Write SIGINT

Read

CP Thread

Shared 

Variables

DP Thread 

Debug Instruction

Debugger Attached

Set Bp

Time
UDF Line Debugger

Signal-based (Forcibly) 
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Pass debug instructions between threads

Set Bp

Write

Explicit Check (Read) Explicit Check (Read)

CP Thread

Shared 

Variables

DP Thread 

Debug Instruction

Debugger Attached

Explicit CheckUDF Line Debugger
Time

Explicit check (Voluntary)
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Supports all debug instructions

…

As Python is an interpreted language, you can also dynamically change a UDF code and 
update an operator state using a language debugger.
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How to reduce debugging overhead?
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Reducing the significant runtime overhead 
introduced by debuggers

Breakpoint Check

UDF Code UDF Debugger

UDF OperatorT TT T TT

Input Tuples Output Tuples

… …

lat > 45 and radius == 8 

Predicate Evaluation

5  for radius in range(1, 10):

6       city = r_tree.query((lat, lng), radius)

Breakpoint Check

Depends on the UDF, we observe more than 2X-5X slowdown. 
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Optimizations to automatically detach debuggers

lat > 45

UDF Code Debugger

T TT T TT

Input Tuples Output Tuples

radius == 8 

UDF Operator

Line 5

Line 6

Pulled-up Predicate

Breakpoint Check

Breakpoint Check

TrueFalse

UDF Code

Line 5

Line 6

UDF Code

T TT

Future Tuples

5  for radius in range(1, 10):

6       city = r_tree.query((lat, lng), radius)

5  for radius in range(1, 10):

7       city = r_tree.query((lat, lng), radius)

if lat > 45 and radius == 8: breakpoint()

Swapped UDF Code

Hot-swapping 

Code

6

T T

Received a Breakpoint

Time

Break

Debugger

Optimization 1: Reducing Breakpoint 
Checks by Hot-swapping UDF Code

Optimization 2: Improving 
Evaluations by Pulling up Predicates
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Experiments

Less than 10% overall runtime overhead Scale up with more data
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• Twitter dataset.
• TPC-H dataset.
• COCO image dataset [19.



Demonstration of Udon: Line-by-line Debugging of User-
Defined Functions in Data Workflows

Come and checkout Udon in action on Texera, a GUI-based 
Workflow system for data science!

Group A

• Tuesday June 11 1:00 pm – 2:30 pm
Location: Europa

• Thursday June 13 5:00 pm – 6:30 pm
Location: Europa
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Overview

Demonstration of Udon: Line-by-line Debugging of User-
Defined Functions in Data Workflows

Yicong Huang, Zuozhi Wang and Chen Li, University of California, Irvine, USA

Udon Architecture (Integrated on Texera)

Acknowledgements: This work was supported by NSF IIS-2107150

Texera 

Workflow

 Web GUI

Execution 

Engine

Workflow with UDF
UDF 

Code Editor

Debugger 

Frontend

Debug-aware Coordinator

Built-in 

Operator UDF Operator

Debugger

UDF Operator

Debugger …

…

Users

Machine

Cluster

UDF Runtime

• Big data systems are complex, User-defined functions (UDFs) are even 

more complex. Debugging UDFs on big data systems are challenging.

• Introducing , a novel debugger for UDFs on big data systems, 

providing a gdb-like line-by-line debugging experience on UDFs.

• Enable collaborative debugging with multiple users on the same workflow, 

either on the same operator together or on separate operators.

• Implemented on top of an open-source data workflow system, Texera.

• Develop multiple data-related optimizations to dynamically attach and 

detach debuggers, reducing runtime overhead introduced by debuggers.

lat > 45

UDF Code Debugger

T TT T TT

Input Tuples Output Tuples

radius == 8 

UDF Operator

Line 5

Line 6

Pulled-up Predicate

Breakpoint Check

Breakpoint Check

TrueFalse

UDF Code

Line 5
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UDF Code

T TT

Future Tuples

5  for radius in range(1, 10):

6       city = r_tree.query((lat, lng), radius)

5  for radius in range(1, 10):

7       city = r_tree.query((lat, lng), radius)

if lat > 45 and radius == 8: breakpoint()

Swapped UDF Code
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Code

6

T T
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Time
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Debugger

Runtime Optimizations
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Related Links

Debugging a UDF running in a Texera Workflow

Conditional Breakpoint

Debugger Frontend

Debugger Instructions

The Two-thread Execution Model

'hot-swapping' UDF code with 

breakpoint hooks as new lines. 

Unlike native debuggers, which 

can't swap active code, our 

method leverages idle times 

between tuple processing in 

data engines.

distinguish between predicates 

on intermediate variables and 

those on incoming tuples. Pull 

up data-related predicates to be 

evaluated once before the 

tuple, instead of evaluating it 

as a line state repeatedly in 

processing of the tuple. 

Udon GitHub:  https://github.com/Texera/Udon

Live System:   https://texera.ics.uci.edu

Demo Video:   https://youtu.be/UGOa1XJMeA8

Full research paper: "Udon: Efficient Debugging of User-Defined Functions in Big Data Systems with Line-by-
Line Control.”  Yicong Huang, Zuozhi Wang, and Chen Li. SIGMOD 24, 26 pages. https://doi.org/10.1145/3626712 

Python UDF runs 

on a separated 

virtual machine 

• to be responsive to control messages.

• to be managed by debuggers.

The data processing thread 

checks if there is a debug 

instruction at the execution 

point specified by the user. 

Naturally, it could be between 

processing of two tuples.

• Collaborative Data Analytics

• Web-based Cloud Service

• Interactive Workflows

• Multi-language Support 

(Python, Java/Scala, R)

• Actor-based Distributed 

Dataflow Engine

• Advanced AI/ML Support

• Open Source!

• Click on the code editor lines to set a breakpoint.

• Right click on a breakpoint to add a condition.

• Gracefully suspends the entire workflow execution 

when a breakpoint is hit.

• Also can pre-set breakpoints before the execution.

• Step through the UDF code, move the execution 

to the next line, next function. 

• Step through the data, to observe the next tuple.

• Retry the current tuple after errors occur.

• Control workers of the operator separately.

• Evaluate any expressions at any point

• Update faulty UDF code without terminating a workflow

• Fix erroneous intermediate state between lines

• Multiple users can share 

the same execution and 

share the same debugging 

session.

• Collaboratively debug the 

same operator, or work on 

different operators at the 

same time.

Collaborative Debugging

Udon GitHub Repo
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