
Udon: Efficient Debugging
of User-Defined Functions
in Big Data Systems with
Line-by-Line Control

Yicong Huang, Zuozhi Wang, Chen Li

University of California, Irvine

Information System Group (ISG)

Dataflow tasks can be complex

2Yicong Huang, Zuozhi Wang, Chen Li | Udon

User-defined Functions are common!

3Yicong Huang, Zuozhi Wang, Chen Li | Udon

Consider a running example workflow

4Yicong Huang, Zuozhi Wang, Chen Li | Udon

Execution of the example workflow

5Yicong Huang, Zuozhi Wang, Chen Li | Udon

Data transformation between language VMs

6Yicong Huang, Zuozhi Wang, Chen Li | Udon

Runtime Bugs in UDF code

i) Data errors: If the lat field is absent from the input tweet, the r_tree.query() function
may raise exceptions or return empty results.

ii) Code errors: The for-loop gradually increases the search radius to find the closest city
but does not terminate after a city is found. Thus the loop may continue and identify
another city when a larger radius is provided, leading to an incorrect output.

7Yicong Huang, Zuozhi Wang, Chen Li | Udon

Runtime Language Debuggers

Python debuggers:

• pdb (The standard CPython debugger)

• PyDev.Debugger

breakpoint-lookup table

file_name line_no

geo_tagger.py 6

… …

8Yicong Huang, Zuozhi Wang, Chen Li | Udon

Breakpoint check

Breakpoint check

Breakpoint check

breakpoint-lookup table

file_name line_no

geo_tagger.py 6

… …

Debugger

Hit!

How to integrate a language debugger into a
data engine?

9Yicong Huang, Zuozhi Wang, Chen Li | Udon

Approach 1: The Debugger Runs Separately from the Engine

Coordinator

Debugger

Debugger Front-end

Debug

Instructions

Debug

Session

Control Instructions

import pydevd_pycharm
pydevd_pycharm.settrace('localhost', port=6789)

PyFlink’s recommended UDF debugging:

10Yicong Huang, Zuozhi Wang, Chen Li | Udon

Approach 1: The Debugger Runs Separately from the Engine

Coordinator

Debugger

Debugger Front-end

Debug

Instructions

Debug

Session

Control Instructions

Limitations:
1. Unresponsiveness caused by two control sources.
2. Uncontrolled workflow suspension.
3. Lack of synchronization between multiple debuggers.

11Yicong Huang, Zuozhi Wang, Chen Li | Udon

Approach 2: The Engine Controls the Debugger

Advantages:
1. A single source of control.

2. Coordinated workflow suspension.

3. Supporting synchronization between multiple debuggers.

Coordinator Control Instructions

Debug Instructions
Debugger Front-end

Debugger

12Yicong Huang, Zuozhi Wang, Chen Li | Udon

Debug-aware Coordinator

Texera

Workflow

 Web GUI

Execution

Engine

Workflow with UDF
UDF

Code Editor

Debugger

Frontend

Debug-aware Coordinator

Built-in

Operator UDF Operator

Debugger

UDF Operator

Debugger …

…

Users

Machine

Cluster

Yicong Huang, Zuozhi Wang, Chen Li | Udon 13

How to send a debug instruction to a UDF?

14Yicong Huang, Zuozhi Wang, Chen Li | Udon

A Novel UDF Execution Model: Two-threaded execution model

Coordinator

Set Bp Bp Hit! Continue

Write Read Write

Read Write Read

Suspended

CP Thread

Shared

Variables

DP Thread

with debugger

Debug Instruction Time

UDF Line Debugger

To receive debug instructions dynamically.

15Yicong Huang, Zuozhi Wang, Chen Li | Udon

Pass debug instructions between threads

Write SIGINT

Read

CP Thread

Shared

Variables

DP Thread

Debug Instruction

Debugger Attached

Set Bp

Time
UDF Line Debugger

Signal-based (Forcibly)

16Yicong Huang, Zuozhi Wang, Chen Li | Udon

Pass debug instructions between threads

Set Bp

Write

Explicit Check (Read) Explicit Check (Read)

CP Thread

Shared

Variables

DP Thread

Debug Instruction

Debugger Attached

Explicit CheckUDF Line Debugger
Time

Explicit check (Voluntary)

17Yicong Huang, Zuozhi Wang, Chen Li | Udon

Supports all debug instructions

…

As Python is an interpreted language, you can also dynamically change a UDF code and
update an operator state using a language debugger.

18Yicong Huang, Zuozhi Wang, Chen Li | Udon

How to reduce debugging overhead?

19Yicong Huang, Zuozhi Wang, Chen Li | Udon

Reducing the significant runtime overhead
introduced by debuggers

Breakpoint Check

UDF Code UDF Debugger

UDF OperatorT TT T TT

Input Tuples Output Tuples

… …

lat > 45 and radius == 8

Predicate Evaluation

5 for radius in range(1, 10):

6 city = r_tree.query((lat, lng), radius)

Breakpoint Check

Depends on the UDF, we observe more than 2X-5X slowdown.

20Yicong Huang, Zuozhi Wang, Chen Li | Udon

Optimizations to automatically detach debuggers

lat > 45

UDF Code Debugger

T TT T TT

Input Tuples Output Tuples

radius == 8

UDF Operator

Line 5

Line 6

Pulled-up Predicate

Breakpoint Check

Breakpoint Check

TrueFalse

UDF Code

Line 5

Line 6

UDF Code

T TT

Future Tuples

5 for radius in range(1, 10):

6 city = r_tree.query((lat, lng), radius)

5 for radius in range(1, 10):

7 city = r_tree.query((lat, lng), radius)

if lat > 45 and radius == 8: breakpoint()

Swapped UDF Code

Hot-swapping

Code

6

T T

Received a Breakpoint

Time

Break

Debugger

Optimization 1: Reducing Breakpoint
Checks by Hot-swapping UDF Code

Optimization 2: Improving
Evaluations by Pulling up Predicates

21Yicong Huang, Zuozhi Wang, Chen Li | Udon

Experiments

Less than 10% overall runtime overhead Scale up with more data

22Yicong Huang, Zuozhi Wang, Chen Li | Udon

• Twitter dataset.
• TPC-H dataset.
• COCO image dataset [19.

Demonstration of Udon: Line-by-line Debugging of User-
Defined Functions in Data Workflows

Come and checkout Udon in action on Texera, a GUI-based
Workflow system for data science!

Group A

• Tuesday June 11 1:00 pm – 2:30 pm
Location: Europa

• Thursday June 13 5:00 pm – 6:30 pm
Location: Europa

23Yicong Huang, Zuozhi Wang, Chen Li | Udon

Overview

Demonstration of Udon: Line-by-line Debugging of User-
Defined Functions in Data Workflows

Yicong Huang, Zuozhi Wang and Chen Li, University of California, Irvine, USA

Udon Architecture (Integrated on Texera)

Acknowledgements: This work was supported by NSF IIS-2107150

Texera

Workflow

 Web GUI

Execution

Engine

Workflow with UDF
UDF

Code Editor

Debugger

Frontend

Debug-aware Coordinator

Built-in

Operator UDF Operator

Debugger

UDF Operator

Debugger …

…

Users

Machine

Cluster

UDF Runtime

• Big data systems are complex, User-defined functions (UDFs) are even

more complex. Debugging UDFs on big data systems are challenging.

• Introducing , a novel debugger for UDFs on big data systems,

providing a gdb-like line-by-line debugging experience on UDFs.

• Enable collaborative debugging with multiple users on the same workflow,

either on the same operator together or on separate operators.

• Implemented on top of an open-source data workflow system, Texera.

• Develop multiple data-related optimizations to dynamically attach and

detach debuggers, reducing runtime overhead introduced by debuggers.

lat > 45

UDF Code Debugger

T TT T TT

Input Tuples Output Tuples

radius == 8

UDF Operator

Line 5

Line 6

Pulled-up Predicate

Breakpoint Check

Breakpoint Check

TrueFalse

UDF Code

Line 5

Line 6

UDF Code

T TT

Future Tuples

5 for radius in range(1, 10):

6 city = r_tree.query((lat, lng), radius)

5 for radius in range(1, 10):

7 city = r_tree.query((lat, lng), radius)

if lat > 45 and radius == 8: breakpoint()

Swapped UDF Code

Hot-swapping

Code

6

T T

Received a Breakpoint

Time

Break

Debugger

Runtime Optimizations

OperatorOperator

Twitter API Geo Tagger Timezone Tagger File Sink

Coordinator

Proxy

F S

Operator

UDF SR

F SR

Operator

FR

Logical View

Physical View

PVM

JVM

Control Channel

Data ChannelS

R Receiver

Sender

F Computation Function

Set Bp

Write

Explicit Check (Read) Explicit Check (Read)

CP Thread

Shared

Variables

DP Thread

Debug Instruction

Debugger Attached

Explicit CheckUDF Line Debugger
Time

Related Links

Debugging a UDF running in a Texera Workflow

Conditional Breakpoint

Debugger Frontend

Debugger Instructions

The Two-thread Execution Model

'hot-swapping' UDF code with

breakpoint hooks as new lines.

Unlike native debuggers, which

can't swap active code, our

method leverages idle times

between tuple processing in

data engines.

distinguish between predicates

on intermediate variables and

those on incoming tuples. Pull

up data-related predicates to be

evaluated once before the

tuple, instead of evaluating it

as a line state repeatedly in

processing of the tuple.

Udon GitHub: https://github.com/Texera/Udon

Live System: https://texera.ics.uci.edu

Demo Video: https://youtu.be/UGOa1XJMeA8

Full research paper: "Udon: Efficient Debugging of User-Defined Functions in Big Data Systems with Line-by-
Line Control.” Yicong Huang, Zuozhi Wang, and Chen Li. SIGMOD 24, 26 pages. https://doi.org/10.1145/3626712

Python UDF runs

on a separated

virtual machine

• to be responsive to control messages.

• to be managed by debuggers.

The data processing thread

checks if there is a debug

instruction at the execution

point specified by the user.

Naturally, it could be between

processing of two tuples.

• Collaborative Data Analytics

• Web-based Cloud Service

• Interactive Workflows

• Multi-language Support

(Python, Java/Scala, R)

• Actor-based Distributed

Dataflow Engine

• Advanced AI/ML Support

• Open Source!

• Click on the code editor lines to set a breakpoint.

• Right click on a breakpoint to add a condition.

• Gracefully suspends the entire workflow execution

when a breakpoint is hit.

• Also can pre-set breakpoints before the execution.

• Step through the UDF code, move the execution

to the next line, next function.

• Step through the data, to observe the next tuple.

• Retry the current tuple after errors occur.

• Control workers of the operator separately.

• Evaluate any expressions at any point

• Update faulty UDF code without terminating a workflow

• Fix erroneous intermediate state between lines

• Multiple users can share

the same execution and

share the same debugging

session.

• Collaboratively debug the

same operator, or work on

different operators at the

same time.

Collaborative Debugging

Udon GitHub Repo

Udon: Efficient Debugging of User-Defined Functions
in Big Data Systems with Line-by-Line Control

Yicong Huang Zuozhi Wang Chen Li

Acknowledgements: We thank Yiming Lin, Xi Lu, Shengquan Ni, the rest of the Texera team at UC Irvine, and the anonymous
reviewers for their invaluable feedback. This work was funded by the National Science Foundation (NSF) under award III-2107150.

Yicong Huang, Zuozhi Wang, Chen Li | Udon 24

	Slide 1: Udon: Efficient Debugging of User-Defined Functions in Big Data Systems with Line-by-Line Control
	Slide 2: Dataflow tasks can be complex
	Slide 3: User-defined Functions are common!
	Slide 4: Consider a running example workflow
	Slide 5: Execution of the example workflow
	Slide 6: Data transformation between language VMs
	Slide 7: Runtime Bugs in UDF code
	Slide 8: Runtime Language Debuggers
	Slide 9: How to integrate a language debugger into a data engine?
	Slide 10: Approach 1: The Debugger Runs Separately from the Engine
	Slide 11: Approach 1: The Debugger Runs Separately from the Engine
	Slide 12: Approach 2: The Engine Controls the Debugger
	Slide 13: Debug-aware Coordinator
	Slide 14: How to send a debug instruction to a UDF?
	Slide 15: A Novel UDF Execution Model: Two-threaded execution model
	Slide 16: Pass debug instructions between threads
	Slide 17: Pass debug instructions between threads
	Slide 18: Supports all debug instructions
	Slide 19: How to reduce debugging overhead?
	Slide 20: Reducing the significant runtime overhead introduced by debuggers
	Slide 21: Optimizations to automatically detach debuggers
	Slide 22: Experiments
	Slide 23: Demonstration of Udon: Line-by-line Debugging of User-Defined Functions in Data Workflows
	Slide 24: Udon: Efficient Debugging of User-Defined Functions in Big Data Systems with Line-by-Line Control

