
Marviq:Quality-Aware Geospatial Visualization
of Range-SelectionQueries Using Materialization

Liming Dong
∗

Tsinghua University

dlm14@mails.tsinghua.edu.cn

Qiushi Bai

UC Irvine

qbai1@ics.uci.edu

Taewoo Kim

UC Irvine

taewok2@ics.uci.edu

Taiji Chen

UC Irvine

taijic@uci.edu

Weidong Liu

Tsinghua University

liuwd@tsinghua.edu.cn

Chen Li

UC Irvine

chenli@ics.uci.edu

Abstract
We study the problem of efficient spatial visualization

on a large data set stored in a database using SQL queries

with ad-hoc range conditions on numerical attributes, for

example, a spatial scatterplot of taxi pickup events in New

York between 1/1/2015 and 3/10/2015. We present a novel

middleware-based technique called Marviq. It divides the

selection-attribute domain into intervals, and precomputes

and stores a visualization for each interval. These results

are called MVS and stored as tables in the database. We can

compute an exact visualization for a request by accessing

MVS and retrieving additional records from the base table.

To further reduce the latter time, we present algorithms

for using MVS to compute an approximate visualization

that satisfies a user-specified similarity threshold. We show

a family of functions with certain properties that can use

this technique. We present an improvement by dividing the

MVS intervals into smaller intervals and materializing low-

resolution visualization for these intervals. We report the

results of an extensive evaluation of Marviq, including a user

study, and show its high performance in both space and time.

CCS Concepts
• Information systems→Middleware for databases.

Keywords
Spatial data, Visualization, Quality guarantee, Marviq.

∗
This work was partially done during his visit to UCI.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SIGMOD’20, June 14–19, 2020, Portland, OR, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6735-6/20/06. . . $15.00

https://doi.org/10.1145/3318464.3389730

ACM Reference Format:
Liming Dong, Qiushi Bai, Taewoo Kim, Taiji Chen, Weidong Liu,

and Chen Li. 2020. Marviq: Quality-Aware Geospatial Visualization

of Range-Selection Queries Using Materialization. In Proceedings of
the 2020 ACM SIGMOD International Conference on Management of
Data (SIGMOD’20), June 14–19, 2020, Portland, OR, USA. ACM, New

York, NY, USA, 16 pages. https://doi.org/10.1145/3318464.3389730

1 Introduction
Spatial data is widely used in a plethora of domains due to

the increasing number of GPS-enabled devices and prevalent

location-based services. Visualization of spatial data in these

applications can help users easily gain insights from the

data and make important decisions. Through an intuitive

yet powerful interface, users can quickly see spatial data

distributions, identify important relationships and properties

of the entities, and observe valuable patterns and anomalies.

As an example, consider a table of records about taxi pickup

events in New York stored in a database. Each record includes

the time, location, and other attributes of a pickup event.

Suppose we want to visualize the pickup events of a time

range (e.g., between 1/1/2015 and 3/10/2015) as a spatial

scatterplot. The following is the SQL query:

SELECT location
FROM taxi
WHERE time BETWEEN '1/1/2015' AND '3/10/2015';

Figure 1(a) shows the scatterplot of the results, where

each dot represents a pickup event. Managers of taxi and

rideshare companies can compare the scatterplots of different

time ranges to decide vehicle-scheduling strategies.

We study how to efficiently compute a spatial visualization

from a large data set stored as a table. We focus on a type of

spatial visualization with a range condition on an attribute

of the table. An important requirement for interactive visual-
ization is responsiveness, i.e., a user-facing request should be

served efficiently, ideally in milliseconds [10, 28, 41]. Com-

pared to common visualization types such as bar charts and

line graphs, spatial visualization has two challenges: (C1)
The amount of data to visualize can be much larger. It is

Research 1: Crowdsourcing and Visualization SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

67

https://doi.org/10.1145/3318464.3389730
https://doi.org/10.1145/3318464.3389730

(a) Using data in [1/1/2015, 3/10/2015] (2 months + 10 days) (b) Using data in the first 2 months

Figure 1: Scatterplot of New York taxi pickup events for a time interval.

computationally expensive to retrieve these spatial points

from the backend database, send them to the frontend over

a network, and render them on the interface. (C2) Since the
range selection in a request can be ad-hoc, it is not practical

to precompute a visualization for every possible range.

In this paper we propose a novel approach called “Marviq,”

which stands for “materialization for spatial visualization

with quality guarantee.” Its main idea is to divide the domain

of the selection attribute into multiple intervals. For each in-

terval, we precompute its visualization and store it in a struc-

ture called “MVS,” which is saved in the backend database as

tables. For a visualization request with a range condition, we

retrieve the materialized visualizations from MVS, as well

as the spatial data in the residual “gap” range from the base

table. Using these results we can compute an exact visual-

ization. In the running example, suppose we compute and

store a scatterplot for each month of taxi pickup events. For

the request of Figure 1(a), we first retrieve the precomputed

scatterplots of January and February 2015, and compute their

union. We then retrieve those pickup events from 3/1/2015

to 3/10/2015, and combine them with the earlier scatterplot

to have the final result. This method is efficient since the

scatterplots of the first two months are already precomputed

and materialized.

Our experiments show that the time of retrieving those ad-

ditional records from the base table can still be a bottleneck.

Thus we want to further reduce it, especially for applications

requiring a high query throughput. To this end, we consider

how to further improve the performance based on the obser-

vation that an approximate visualization using partial results

can be acceptable by the user. For instance, Figure 1(b) is

an approximate scatterplot using the data of the first two

months, which already shows a very similar distribution,

even in a zoomed-in region shown in the figure. Such an

approximate visualization is often acceptable especially be-

cause nowadays devices of visualization interfaces such as

desktops, laptops, or cell phones have a limited resolution.

When deciding how to compute an approximate visualiza-

tion, we are facing an additional challenge: (C3) how to know

if the visualization computed using partial results is “good

enough” for the user? Thus we need to do reasoning about

the quality of an approximate visualization. We show for a

given quality function to compute the similarity between two

visualizations, how to estimate the quality of an approximate

visualization using MVS. We further improve MVS by divid-

ing its intervals (e.g., months) into finer-granularity intervals

(e.g., weeks), and materialize a low-resolution visualization

for each small interval. We identify certain properties that

need to be satisfied by this function in order to use Marviq.

One advantage of Marviq is that it can leverage the storage,

indexing, and querying capabilities of the underlying data-

base, making it easy and efficient to implement. In summary,

we make the following contributions:

• We present a technique called “Marviq” that can effi-

ciently support spatial visualization for queries with

an arbitrary range selection condition (Section 2).

• We show how to use Marviq to compute an approxi-

mate visualization using itsMVS structure, and analyze

its quality for a given similarity function. We present

techniques for constructing a high-quality MVS effi-

ciently (Section 3).

• We show a family of similarity functions supported by

Marviq. We also generalize the solution to the case of

multi-attribute conditions, heatmap visualization, and

zoom in/out operations (Section 4).

• We improve the performance of MVS by dividing an

interval to small intervals and precomputing a low-

resolution visualization for each small interval. We

study how to analyze the quality of results using the

visualizations of these small intervals (Section 5).

Research 1: Crowdsourcing and Visualization SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

68

• We report the results of an extensive evaluation of

Marviq on real data sets, including a user study. Exper-

iments show its low storage size and high query per-

formance (response time in milliseconds) (Section 6).

1.1 Related Work
Visualization is a broad topic studied in many commu-

nities. Here we mainly focus on efficiency-related work. A

survey [16] summarized studies on interactive data analytics

and visualization, and there are several recent studies on this

topic [21, 23, 25, 38].

Approximate Query Processing (AQP). There are many

techniques for computing approximate answers to queries [2,

17, 26, 33, 36, 50, 51]. Sampling is one of the commonly used

AQP methods. For instance, BlinkDB [2] uses stratified sam-

pling to generate samples, and utilizes them to compute error-

bounded results. AQP++ [37] integrates samples and precom-

puted aggregated results to answer queries. Other related

studies include [4, 5, 12, 14, 18, 31, 35, 37, 39, 44]. For instance,

Sample+Seek [12] combines data samples for high-selectivity

predicates and an inverted index for low-selectivity predi-

cates to answer aggregation queries. In our experiments, we

chose Sample+Seek as a representative technique and com-

pared it with Marviq. One advantage of Marviq is that it can

be used to compute an exact result. Furthermore, it performs

much better when computing an approximate visualization

with a quality guarantee, as shown in the results in Section 6.

Datacube-based approaches. Related studies include [10,

11, 20, 22, 27, 29, 46]. Most of them do not focus on spatial

visualization and do not support ad-hoc query conditions.

ImMens [29] and Falcon [32] support fixed-bin ranges with-

out supporting arbitrary ranges. Nanocubes [27] supports

queries with arbitrary ranges by using in-memory cubes,

but cannot support large data sets exceeding the memory

size. For example, the authors reported that a dataset of 220

million records used about 45GB memory. Marviq uses a

backend database to store its precomputed results, thus can

handle much larger data sets (e.g., 1.3 billion records in the

the New York taxi dataset managed using a low-end server).

Progressive visualization. There are solutions that show
visualization results progressively [5, 9, 10, 14, 19, 31]. For

instance, DICE [10] uses random and stratified samples and

other techniques to present an approximate result at first,

then incrementally updates the result. Pangloss [31] uses

Sample+Seek [12] to do progressive visualization. Hillview [5]

builds an incrementally updated spreadsheet for browsing a

large dataset based on sketch [6]. Marviq can also be used to

support progressive visualization, for example, by incremen-

tally retrieving additional results from the base table.

Prefetching-based approaches. Example techniques are

[3, 7, 40, 48]. For instance, ForeCache [3] divides visualiza-

tions into tiles and prefetches them based on predicted user

behaviors. Atlas [7] uses predictive caching together with

the backend database to support ad-hoc queries over time

series datasets. IDEA [15] treats query results as variables,

and reuses them in subsequent ad-hoc queries.

Visualization using big data systems. These techniques
use Hadoop, Spark, Hive, Impela, etc. to compute visual-

izations [5, 8, 13, 41, 49]. For instance, HadoopViz [13] and

GeoSparkViz [49] use Hadoop and Spark to generate high-

resolution visualizations. Their focus is on offline construc-

tion, not on interactive visualization for queries with ad-hoc

conditions. There are database solutions that use specialized

hardware, such as GPU-based MapD/OmniSci [30].

Other solutions. VAS [35] computes a high-quality sample

as an approximate visualization for scatterplots. It assumes

results are already available (e.g., retrieved from a database)

and focuses on generating good samples. Our focus is on

reducing the time of retrieving query results from the back-

end database, and we experimentally compared these two

approaches (Section 6). Kyrix [41] provides a model to create

scalable visualizations and a gallery of visualizations. It does

not support the aforementioned visualization with ad-hoc se-

lection conditions on a numerical attribute when the domain

cannot be modeled as multiple discrete categories.

2 Marviq Overview
System architecture: We consider a typical three-tier ar-

chitecture (Figure 2), which consists of a backend database,

a frontend visualization interface, and a middleware layer in

between. Let 𝑇 be a relational table in the database, where

each record represents a spatial object such as a point of

interest (POI), a taxi pickup event, or a tweet. The schema of

the table includes a primary key called Id, a spatial attribute
called Point represented as geo coordinates, and other at-

tributes about each object. Table 1 shows an example data

set of taxi pickup events, where the PickupLoc attribute

stores the spatial location of an event, and the PickupTime
attribute stores the time of the event. To see the pickup events

between 1/1/2015 and 1/31/2015, a user submits a query

to the database to retrieve spatial objects in this time interval,

and visualize the results on the frontend.

Visualization requests with selection conditions: A vi-

sualization request from the frontend retrieves records from

the table using the following query:

SELECT location
FROM T
WHERE A BETWEEN a1 AND a2;

Research 1: Crowdsourcing and Visualization SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

69

Table 1: Sample data of taxi pickup events
Id PickupLoc PickupTime . . .

2014061721380019 (-74.0083, 40.7042) 6/17/2014 21:38:00 . . .

2014081414340025 (-73.9125, 40.6209) 8/14/2014 14:34:00 . . .

2014091217520078 (-73.9981, 40.7225) 9/12/2014 17:52:00 . . .

For simplicity we first consider the case where the query

has a condition on a single attribute, and will generalize the

results to the case of multi-attribute conditions. There are

various ways to visualize spatial objects, such as scatterplots

(where each record is shown as a dot) and heatmaps (where

records are aggregated in a grid). We first focus on spatial

scatterplot, then generalize the results to spatial heatmap.

A scatterplot 𝑉 is a mapping from a spatial pixel (𝑥,𝑦) to a

0/1 bit, where 1 means the geolocation corresponding to the

pixel (𝑥,𝑦) has data. We use “|𝑉 |” to represent the number

of 1-pixels in 𝑉 . Notice (𝑥,𝑦) is a logical pixel, which may

correspond tomultiple physical pixels in the frontend display,

e.g., it could correspond to 4 × 4 display pixels.

MVS: Precomputing Scatterplots for Intervals: Using
Marviq, we partition the domain of the selection attribute

𝐴 into multiple intervals, and store a precomputed visual-

ization of the spatial objects in each interval 𝐼 . This scat-

terplot is called the exact visualization (or “EV” for short)

for interval 𝐼 , denoted as “𝐸𝑉𝐼 .” In the current example, the

attribute PickupTime spans from 1/1/2009 to 12/31/2015.
As shown in Figure 3, we first divide the time domain into

intervals, e.g., month intervals, and compute a scatterplot

for each month. The first scatterplot is for the data from

5/1/2009 to 5/31/2009. These EV’s are stored in a struc-

ture called MVS, which stands for materialized visualization
results. This structure can be constructed either offline or

maintained incrementally on the fly as more visualization

requests are received. See Section 3.2 for details.

Consider a visualization request with a query range 𝐶 . As

shown in Figure 4, let 𝐶 include intervals 𝛿1, 𝐼1, 𝐼2, . . ., 𝐼𝑚 ,

and 𝛿2, where 𝐼1, . . . , 𝐼𝑚 are the MVS intervals covered by

𝐶 completely. Let their union be 𝛼 . Intervals 𝐼𝑙 and 𝐼𝑟 are

respectively the left and right intervals partially overlapping

with 𝐶 , if any. In addition, 𝛿1 = 𝐶 ∩ 𝐼𝑙 , 𝛿2 = 𝐶 ∩ 𝐼𝑟 . For

each 𝐼𝑖 (𝑖 = 1 . . .𝑚), we retrieve the corresponding 𝐸𝑉𝐼𝑖 from

the database, and compute their union 𝑉𝛼 = ∪𝑚
𝑘=1

𝐸𝑉𝐼𝑘 . We

D
at
ab
as
e

Fr
on
te
nd

M
id
dl
ew
ar
e

 Visualization
request

 Visualization
result

Answers

Query

Figure 2: Visualization architecture for Marviq.

2009 2015

May
…

February

6/20/20157/10/2014

~ ~ ~ ~

Figure 3: Marviq precomputes and stores a scatterplot 𝐸𝑉𝐼
for each interval 𝐼 .

also retrieve the records in the residual intervals 𝛿1 and 𝛿2.

Using these records, together with 𝑉𝛼 , we compute the final

scatterplot for the user.

...

~

Il I1 I2 Im Ir

Query range C

β
δ2δ1 α

~

Figure 4: Computing a visualization using MVS.

3 Quality-Aware Approximate
Visualization

A computational bottleneck in the aforementionedmethod

is the step of retrieving records in the residual intervals 𝛿1
and 𝛿2. (See Section 6.3 for some experimental results.) We

consider how to reduce this time by computing an approx-

imate visualization that is “good enough” for the user. To

quantify the notion of quality, we assume we are given a

function F that measures the similarity between two spatial

visualizations. Given two spatial visualizations 𝑉1 and 𝑉2,

the function computes a value F (𝑉1,𝑉2) as their similarity.

The quality function F depends on the type of visualization.

For example, quality functions for scatterplot include per-

ceptual hash [47], mean squared error [34], PSNR [34], and

SSIM [45].

We assume each visualization request (with a query𝑄 and

a range 𝐶) has a similarity threshold 𝜏 . Any approximate

visualization with a similarity above 𝜏 is acceptable to the

user. Formally, let 𝑄 (𝑇) be the answers to 𝑄 , and 𝑉 (𝑄) be
the exact visualization generated using 𝑄 (𝑇). We want to

compute an approximate visualization 𝑉𝑎 that meets the

quality threshold, i.e.,

F
(
𝑉 (𝑄),𝑉𝑎

)
≥ 𝜏 .

3.1 Jaccard-Based Visualization
We consider a commonly used similarity function, namely

Jaccard, and show how to derive a bound on the quality of

𝑉𝛼 for this function. Given two scatterplots 𝑉1 and 𝑉2, their

interaction 𝑉1 ∩ 𝑉2 is a scatterplot that maps a pixel (𝑥,𝑦)

Research 1: Crowdsourcing and Visualization SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

70

to a 0/1 value that is a conjunction of 𝑉1 (𝑥,𝑦) and 𝑉2 (𝑥,𝑦).
Their union 𝑉1 ∪𝑉2 is defined similarly using a logical OR

operation. The Jaccard similarity between two scatterplots

𝑉1 and 𝑉2 is defined as

J (𝑉1,𝑉2) =
|𝑉1 ∩𝑉2 |
|𝑉1 ∪𝑉2 |

.

Two scatterplots are identical if and only if their similarity is

1, and they do not share any 1-bit pixels if and only if their

similarity is 0.

As shown in Figure 4, consider 𝛽 = 𝐼𝑙 ∪ 𝐼1 ∪ . . . ∪ 𝐼𝑚 ∪ 𝐼𝑟 ,

and𝑉𝛽 = 𝑉𝛼 ∪𝐸𝑉𝐼𝑙 ∪𝐸𝑉𝐼𝑟 . The following lemma gives a lower

bound on the similarity between 𝑉𝛼 and 𝑉 (𝑄).

Lemma 3.1. For a query as shown in Figure 4, we have:

J (𝑉𝐶 ,𝑉𝛼) ≥ J (𝑉𝛽 ,𝑉𝛼) . (1)

Based on this lemma, we use MVS to compute an approxi-

mate scatterplot that meets the quality requirement as fol-

lows. We first access MVS to compute 𝑉𝛼 and 𝑉𝛽 , and esti-

mate the quality based on Lemma 3.1. If the quality meets

the requirement 𝜏 , we return 𝑉𝛼 to the user. Otherwise, we

access the table 𝑇 to retrieve the records in the ranges 𝛿1
and 𝛿2, and compute their visualization𝑉 . We return𝑉𝛼 ∪𝑉

as the final, exact scatterplot to the frontend. Alternatively,

we can query the table 𝑇 to retrieve the records in 𝛿1 and

compute its scatterplot 𝐸𝑉𝛿1 , if the quality of 𝐸𝑉𝛿1 ∪𝑉𝛼 meets

the requirement, we can return this approximate scatterplot.

Otherwise, we need to retrieve the records in 𝛿2. Optionally

we can access the records in 𝛿2 first.

3.2 Constructing a High-Quality MVS
In this subsection we discuss how to efficiently construct

a high-quality MVS. We first consider the case of having

a query workload, then study the case where queries are

received on the fly, and we construct and maintain MVS

adaptively. A main focus in both cases is how to decide and

modify the intervals.

3.2.1 MVS Construction for a Query Workload Consider a

given workload Q = {𝑄1, . . . , 𝑄𝑛} and a storage budget B
for the MVS. For simplicity, we first consider the case where

each EV is stored as a bitmap, then all the EV’s have the same

storage size. The problem becomes finding a set of intervals

|M| ≤ B that can maximize the overall efficiency of the

queries in the workload. The main idea of our algorithm is

to first use all the start and end points of query intervals

to construct the initial structure, then reduce the number

of intervals. For this purpose, we introduce a loss value for

removing a dividing point 𝑋𝑖 as:

𝑙𝑜𝑠𝑠 (𝑋𝑖) = 𝑁 (𝑋𝑖−1, 𝑋𝑖) · 𝐿(𝑋𝑖) + 𝑁 (𝑋𝑖 , 𝑋𝑖+1) · 𝑅(𝑋𝑖). (2)

X2X1 X4

Q1

X3 X5 X6

Q2

Q3

Q4

Q
5

(18) (9) (110) (27)

(54) (128) (27)

Initial loss values:
Loss values after

 removing X3 :

10 9 45 20 7

Figure 5: Loss values of dividing points.

The loss consists of two values, one for left queries and

one for right queries. Take the left value as an example.

𝑁 (𝑋𝑖−1, 𝑋𝑖) is the number of spatial objects in the interval

𝑋𝑖−1𝑋𝑖 , and 𝐿(𝑋𝑖) is the number of queries on the left of 𝑋𝑖

that cover interval𝑋𝑖−1𝑋𝑖 and end at𝑋𝑖 . The intuition behind

this value is that once 𝑋𝑖 is removed, the EV of 𝑋𝑖−1𝑋𝑖 can

no longer be used to compute a partial visualization of these

queries, and the number of additional records that need to

be retrieved is 𝑁 (𝑋𝑖−1, 𝑋𝑖). Similarly, 𝑅(𝑋𝑖) is the number

of queries on the right of 𝑋𝑖 that start from 𝑋𝑖 and cover

interval 𝑋𝑖𝑋𝑖+1, and 𝑁 (𝑋𝑖 , 𝑋𝑖+1) is the number of objects

in this interval. Figure 5 shows a few intervals and their

corresponding number of records. If we remove point 𝑋4,

then 𝐸𝑉𝑋3𝑋4
can no longer be used to compute the partial

visualization for the red segments of 𝑄2 and 𝑄3, with 𝑋3𝑋4

(in red) as the interval from which additional records need

to be retrieved. Similarly, 𝐸𝑉𝑋4𝑋5
can no longer be used to

compute the visualization for the red interval of 𝑄4. In the

figure, initially we have 𝑙𝑜𝑠𝑠 (𝑋4) = 45∗2+20∗1 = 110. After

removing 𝑋3, we have 𝑙𝑜𝑠𝑠 (𝑋4) = 54 ∗ 2 + 20 ∗ 1 = 128. We

can use a greedy algorithm to iteratively choose a point with

a minimum loss value to remove, and merge its two adjacent

intervals until the total storage is within the given space.

Our discussion so far assumes all EV’s have the same size.

If EV’s have different sizes, we can treat the storage size

of each EV as its cost, and compute the size reduction of

removing 𝑋𝑖 as

𝑠𝑖𝑧𝑒
(
𝐸𝑉 (𝑋𝑖−1𝑋𝑖)

)
+ 𝑠𝑖𝑧𝑒

(
𝐸𝑉 (𝑋𝑖𝑋𝑖+1)

)
− 𝑠𝑖𝑧𝑒

(
𝐸𝑉 (𝑋𝑖−1𝑋𝑖+1)

)
.

We use the ratio of loss/(size reduction) as a criterion to

choose the next point with the minimum ratio to remove.

3.2.2 Adaptive Construction of MVS In the case where a

query workload is not given, we need an online method that

can adaptively construct and update the MVS structure. We

develop such a technique as follows. At the beginning, we

divide the domain of the attribute 𝐴 to fixed-length inter-

vals, and construct an initial MVS. As more queries arrive, we

maintain a history of recent queries, denoted asQ, which pre-

sumably represent the distribution of future queries. Based

on these queries, we maintain statistics for the points and

intervals. Periodically we merge some of the intervals by

removing points to decrease the total storage, or split some

of them with a higher storage cost.

Research 1: Crowdsourcing and Visualization SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

71

Point loss and removal: For each point, similar to the pre-

vious case, we compute its loss value based on the queries

in the recent history Q. To merge intervals to reduce the

storage space, we choose a point with the minimum loss,

and merge its two adjacent intervals. As before, we also need

to update the loss values of the start and end points of the

new interval. When a new query 𝑄 with a range [𝑎, 𝑏] is
added to Q, we modify the loss values of two adjacent points.

Similarly, when an old query is removed from the history Q,

we need to modify the loss values of the two affected points.

Interval benefit and splitting: In order to decide which

interval to split, we keep a benefit value for each interval,

which is the number of start and end points of the queries in

Q that fall into this interval. Intuitively, the larger the benefit

value is for the interval, the more queries the MVS structure

can answer (possibly partially) by splitting this interval. We

perdiodically choose an interval with the largest benefit to

split, e.g., into two equal-size intervals. Similarly, we can

incrementally update these benefit values when a new query

is added to Q and an old query is removed from Q.

Notice that we do not have to update the point-loss val-

ues and interval-benefit values for each new query. As for

histogram-like data structures, we can update these values

periodically for new queries, while the content in the MVS

structure is still accurate.

MVS Storage and Maintenance. One advantage of MVS

is that it can be efficiently stored and accessed as tables in

the backend database. The EV of a parent interval can be

stored as a list of coordinates of 1-pixels, or as a bitmap if

the number of 1-pixels is very large. For the former method,

we can use two tables to store the MVS structure, one for

the start and end points of intervals, and one for coordinates

of the pixels. In the presence of data updates (insertions

and deletions), MVS can be maintained incrementally and

efficiently. When a new record 𝑡 is inserted, we set the value

of the geo-position in the corresponding EV to 1. In the case

of deleting a record, we need to update the value of its geo-

position in its EV based on whether there is still a remaining

record at this position in the EV.

4 Generalizing Marviq
Our Marviq results so far are developed for scatterplot

visualization and Jaccard function when a query condition

is on a single numerical attribute. In this section, we extend

the results to general cases by relaxing these assumptions.

4.1 Multi-attribute Conditions
To support queries with multiple selection conditions, we

can extend the one-dimensional MVS structure to a multi-

dimensional structure. The main idea is that instead of using

intervals, we use multi-dimensional regions, and keep sta-

tistics within each region. The MVS structure, methods for

estimating quality of an approximate visualization using

the structure, as well as the algorithms for generating an

approximate visulization, can all be extended accordingly.

To illustrate the generalization, we use an example of two

attributes and show how to construct and utilize MVS. Con-

sider a table of spatial objects with two numerical attributes,

namely Date and Revenue. Figure 6(a) shows an MVS struc-

ture for these two attributes. We divide the entire domains

of these two attributes into two-dimensional regions. That

is, the 𝑥-axis has Date intervals and the 𝑦-axis has Revenue
intervals. We generate an exact visualization (EV) for each

region that consists of a Date interval and a Revenue inter-
val. For example, 𝐸𝑉5/2015, [3,4] is the EV of the records with a

Date value in May 2015 and a Revenue value in [3, 4].

Date
12/2015

10 Revenue EV5/2015, [3, 4]

0
1/2015

(a) MVS

β
α δ

Date

Revenue10

12/2015
0
1/2015

(b) Quality estimation

Figure 6: MVS for two attributes.

For a visualization request 𝑈 (𝑄, 𝜏) with a condition 𝐶

on these two attributes, we can use the EV’s of the regions

covered by𝐶 to compute an approximate visualization𝑉𝑎 . To

estimate the quality of 𝑉𝑎 , we can extend Lemma 3.1 to this

two-dimensional case. In particular, as shown in Figure 6(b),

𝛼 is the union of maximal number of MVS regions that are

covered by 𝐶 , 𝛿 is the area 𝐶 − 𝛼 , and 𝛽 is the union of

minimal number of MVS regions that cover𝐶 . The following

inequality shows a lower bound of the quality of 𝐸𝑉𝛼 :

J (𝑉 (𝑄),𝑉𝛼) ≥ J (𝑉𝛽 ,𝑉𝛼),

which is an extension of Lemma 1.

As the number of selection attributes increases, the num-

ber of regions (i.e., “cells” in the data cube) can be large. In

this case, the number of spatial objects satisfying many se-

lection conditions could be much smaller, and they can be

efficiently retrieved without using MVS, possibly using a

multi-attribute composite index. We can use data warehouse

techniques to construct MVS by judiciously choosing some

of the cells to compute and store an EV (e.g., [20]). Since the

intervals in a query can cover multiple MVS intervals on

each attribute, we can answer this request by sending a dis-

junctive query to the original table to retrieve those records

in the non-materialized cells, sending another disjunctive

query to MVS to retrieve the EV’s for those materialized

cells, and computing a visualization.

Research 1: Crowdsourcing and Visualization SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

72

4.2 General Quality Functions
We extend the Jaccard-based results in Section 3 to a family

of similarity functions that satisfy two properties.

Subset Increasing Monotonicity. As described in Sec-

tion 3.1, if the scatterplot𝑉𝛼 for the contained intervals does

not satisfy the user threshold 𝜏 , we can retrieve more records,

e.g., those in interval 𝛿1. This method assumes that retrieving

more data points in the query range 𝐶 increases the visual-

ization quality. In other words, it means adding more data

points satisfying the query condition can increase the quality.

This property is also needed by the improved MVS technique

presented in Section 5. Here is a formal definition of the prop-

erty. A similarity function F is said to be subset increasing
monotonic if for any three intervals 𝐼 1, 𝐼 2, and 𝐼 3 of the condi-
tion attribute𝐴, if 𝐼 1 ⊆ 𝐼 2 ⊆ 𝐼 3, then F (𝑉𝐼 1 , 𝐼𝐼 3) ≤ F (𝑉𝐼 2 ,𝑉𝐼 3).

Superset Decreasing Monotonicity. Lemma 3.1 shows

how to use the similarity between𝑉𝛼 and𝑉𝛽 as a lower bound

of the similarity between 𝑉𝛼 and 𝑉𝐶 . The property means

adding more data points in the range 𝛽−𝐶 reduces its similar-

ity to𝑉𝛼 . This property is formally defined as follows. A simi-

larity function F is said to be superset decreasing monotonic if
for any three intervals 𝐼 3, 𝐼 4, and 𝐼 5 of the condition attribute

𝐴, where 𝐼 3 ⊆ 𝐼 4 ⊆ 𝐼 5, we have F (𝑉𝐼 4 ,𝑉𝐼 3) ≥ F (𝑉𝐼 5 ,𝑉𝐼 3).

F(
V I

, V
I3)

⊆

Su
bs

et

Superset

Interval I

Vi
su

al
iza

tio
n

Si
m

ila
rit

y

100%

I1 I2 I3⊆ ⊆ ⊆I4 I5

Figure 7: Monotonic properties of a quality function

These two properties are illustrated in Figure 7. Intuitively,

the first property means that adding more data points (in

the interval 𝐼 3) to a subset of points in 𝐼 3 will make the

scatterplot more similar to 𝑉𝐼 3 . The second property means

that adding more data points to a superset of points in 𝐼 3 will

make the scaterplot less similar to 𝑉𝐼 3 . These two properties

are satisfied by many similarity functions, such as mean

squared error (MSE), PSNR [34], and SSIM [45], and the

Marviq results in Section 3 are applicable to these functions.

For instance, the MSE between two𝑚 × 𝑛 scatterplots 𝐴 and

𝐵 is defined as:

𝑀𝑆𝐸 (𝐴, 𝐵) = 1

𝑚 × 𝑛

𝑚∑
𝑖=1

𝑛∑
𝑗=1

(𝐴(𝑖, 𝑗) − 𝐵(𝑖, 𝑗))2 .

We can show that MSE satisfies both monotonicity prop-

erties. For instance, the following is an extension of Lemma 1

based on Figure 4:

𝑀𝑆𝐸 (𝑉𝐶 ,𝑉𝛼) ≤ 𝑀𝑆𝐸 (𝑉𝛽 ,𝑉𝛼). (3)

4.3 Heatmap Visualization
Next we illustrate how to extend the results based on scat-

terplot to heatmap. A heatmap is a spatial grid with a density

value for each cell, which corresponds to the number of spa-

tial objects in the cell. A heatmap can be used to generate

an image with a smoothing step, by taking an average of the

neighbor-cell numbers for each cell. Heatmap can be viewed

as a generalization of scatterplot by allowing each cell to

have a count value, not just a 0/1 value.

The main idea is to keep the density for each cell when

constructing MVS, and use the density to derive a lower

bound of the quality. For instance, Figure 8 shows the gener-

ation of EV’s for heatmap, in which we set the resolution of

an EV to be the granularity of the heatmap. For each pixel

of an EV, we keep the number of records in this pixel. For

two consecutive intervals and a pixel, the count value for

the pixel in their EV is the summation of the correspond-

ing counts for the pixel in the two separate EV’s. There are

various quality functions for heatmap such as MSE.

2014 2015

EV2014,4 EV2015,2

1
5

2
3

7
11

2
3
10

9 2 3

Q (τ=0.9)
α

β

… 2
7

3
1 8
2

5
6

12

4 7
5
1

4
2

Figure 8: MVS for heatmap.

Figure 8 shows an example query with a range condition

𝐶 = [3/10/2014, 12/15/2015] and a quality requirement 𝜏 =

0.9. For the intervals in [4/2014, 11/2015] that are completely

covered by 𝐶 , we can use the summation of the counts in

their EV’s to generate an approximate heatmap𝑉𝛼 . Similarly,

let 𝑉𝛽 be the corresponding approximate heatmap using the

EV’s of the intervals in [3/2014, 12/2015]. Inequality 3 still

holds for heatmap and MSE. Based on this result, we can

use𝑀𝑆𝐸 (𝑉𝛽 ,𝑉𝛼) as an upper bound of the error distance. If

𝑉𝛼 cannot meet the requirement 𝜏 , we retrieve the records

in [3/10/2014, 3/31/2014] or [12/1/2015, 12/15/2015] or all
these records to compute a heatmap with a higher quality.

Other results extend correspondingly.

4.4 Supporting Zooming and Panning
So far we assume the visualization has a fixed location

and resolution (e.g., the entire US map). Very often a user

wants to zoom in, zoom out, and pan on the map. To sup-

port these operations, we can divide the spatial space into

multiple levels, and build an MVS structure for each level.

As the user zooms into a smaller area, the resolution of the

result visualization increases, causing the size of the struc-

ture to increase. We can divide the MVS structure at this

Research 1: Crowdsourcing and Visualization SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

73

level into multiple tiles, and only retrieve the tiles visible in

the current map area [3]. As the user pans on the map, we

can correspondingly retrieve the related tiles. Notice that

we do not need to build an MVS structure for each level

for two reasons. First, we can use the tiles of a high resolu-

tion to compute a tile with a low resolution. Second, for a

level with a high resolution (e.g., at the local district level),

the number of records satisfying both the spatial condition

and the selection condition in the query tends to be much

smaller. By using indexes such as B+ tree and R-tree, we can

efficiently retrieve these records and show all of them on the

map. Given a smaller number of records, we can efficiently

compute an exact visualization.

5 Improving MVS Using Low-Resolution
Visualizations

In MVS, increasing the number of intervals improves the

quality the visualization using a union of its EV’s, as well

as the efficiency of the generated query. Meanwhile, the

storage overhead increases as well. In case the quality of

the results using the precomputed EV’s does not meet the

query requirement, we need to retrieve all the data in the

remainder interval in the query condition, since we do not

have any information about the data distribution within the

interval. In this section, we present an improved structure

called MVS
+
, analyze how to use it to estimate the quality

of a visualization, and develop an algorithm for using this

structure to compute an approximate visualization. Again,

we focus on scatterplot and Jaccard similarity, and the results

can be generalized to other quality functions and heatmap.

5.1 Adding Low-Resolution Visualizations
The main idea of MVS

+
is the following. We divide the

domain of the attributeA into intervals of two granularities,

namely parent intervals and child intervals, where each parent
interval consists of multiple child intervals. We precompute

visualizations as follows. (1) Store an EV for each parent

interval. (2) For each child interval 𝑐 , compute the EV of

the records from the beginning of its parent interval until

(including) 𝑐 , and store a low-resolution visualization (or “LV”
for short) for 𝑐 . Given an exact visualization with a resolution

of 𝑁 ×𝑁 , a low-resolution visualization is a grid of size 𝑘 ×𝑘 ,
where 𝑘 is a tunable parameter. Each cell in the grid stores

the number of 1-bit pixels in the corresponding 𝑁 /𝑘 × 𝑁 /𝑘
region in the exact visualization.

Figure 9 shows an MVS
+
structure for the taxi data, using

years and months as two interval granularities. The structure

has an EV for each year, denoted as 𝐸𝑉2009 . . . 𝐸𝑉2015, with

a default resolution of 10 × 10. Each year is divided to 12

month intervals. Consider October 2015 (i.e., 10/2015) as

an example. We compute the EV of the records of the year

2015 up to this month, i.e., from 1/2015 to 10/2015, denoted

as 𝐵𝐸𝑉10/2015, where 𝐵 stands for “before.” To save space,

instead of storing this EV, we want to store a visualization

with a low resolution. We divide the spatial region into a

2 × 2 grid (i.e., 𝑘 = 2), where each cell corresponds to a 5 × 5

region in the original resolution. Each cell stores the number

of 1-bit pixels in the corresponding region. For instance, the

top-left cell has a value 7, since the corresponding cell has 7

pixels of value 1. This low-resolution structure is denoted as

𝐵𝐿𝑉10/2015. In general, we use “𝐵𝐸𝑉𝑐” to represent the EV for

the records up to a child interval 𝑐 in the same parent interval,

and use 𝐵𝐿𝑉𝑐 to denote the corresponding low-resolution

visualization. Similarly,𝐴𝐸𝑉10/2015 is the EV of those months

after this month in the same year, and we use𝐴𝐿𝑉 to denote

the corresponding low-resolution visualization.

EV2015EV2009

…

2009 2015~

BLV10/2015

7 6
4 5

BEV10/2015

EV...

…

~

Figure 9: MVS+ structure for taxi data.

5.2 Tighter Quality Bound of EV Results
Nextwe discuss how to useMVS

+
to answer a visualization

request. We focus on the case where the query range𝐶 starts

at the beginning of a parent interval, and ends at the end of

a child interval. The results can be generalized to the case

where the condition starts and ends at an arbitrary value.

2015
Query Range C

2009 to 2014
Oct.

EVβEVα

7 6
4 5
LVδ

9 14
13 6

LVβ

7 14
11 4

LVα

EVδ

∪ ⊆

+ ,min{ }

δ
β

α

~ ~ ~ ~

Figure 10: Maximal value of |𝐸𝑉[1/2009,10/2015] |.

Consider the query in Figure 10, whose range is [1/2009,
10/2015]. Let 𝛼 denote the range [1/2009, 12/2014], so 𝐸𝑉𝛼 =

𝐸𝑉2009 ∪ . . .∪ 𝐸𝑉2014. One way to estimate the quality of 𝐸𝑉𝛼
is to use the right-hand side of Inequality 1. Its denominator

in the bound is based on the pessimistic assumption that the

1-bit pixels in year 2015 are all in the query range𝐶 . We can

derive a tighter bound by using the additional information

Research 1: Crowdsourcing and Visualization SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

74

in the monthly LV’s in 2015 stored in the structure. Recall

that the Jaccard similarity between 𝐸𝑉𝛼 and 𝑉 (𝑄) is:

J
(
𝑉 (𝑄), 𝐸𝑉𝛼

)
=

|𝐸𝑉𝛼 |
|𝐸𝑉𝛼 ∪ 𝐵𝐸𝑉10/2015 |

. (4)

For 𝐸𝑉𝛼 , we use 𝐿𝑉𝛼 to denote its corresponding 2×2 visu-

alization. For each cell 𝑐𝑖 in the grid, the maximal value of the

denominator is when 𝐸𝑉𝛼 and 𝐵𝐸𝑉10/2015 (𝑐𝑖) have disjoint
sets of 1-bit pixels in this cell 𝑐𝑖 . Therefore, the denominator

in the function is no greater than

4∑
𝑖=1

(
𝐿𝑉𝛼 (𝑐𝑖) + 𝐵𝐿𝑉10/2015(𝑐𝑖)

)
.

The number of 1-bit pixels in the query range 𝐶 should

be no greater than 𝐸𝑉[2009,2015] . Let 𝛽 = [2009, 2015] and
𝛿 = [1/2015, 10/2015], thus 𝐿𝑉𝛿 = 𝐵𝐿𝑉10/2015. Let 𝑛 = 4

denote the number of cells in each LV. We have:

J
(
𝑉 (𝑄), 𝐸𝑉𝛼

)
≥

𝑛∑
𝑖=1

𝐿𝑉𝛼 (𝑐𝑖)

𝑛∑
𝑖=1

𝑚𝑖𝑛{𝐿𝑉𝛼 (𝑐𝑖) + 𝐿𝑉𝛿 (𝑐𝑖), 𝐿𝑉 𝛽 (𝑐𝑖)}
. (5)

Notice that 𝐿𝑉𝛿 is 𝐵𝐿𝑉10/2015 of the last month in the query

range 𝐶 . The above result can be generalized to as follows.

Lemma 5.1. Inequality 5 is valid for a general query𝑄 with
a range 𝐶 that starts at the beginning of a parent interval
and ends at the end of a child interval. In the inequality, 𝛼
is the union of the parent intervals completely covered by 𝐶 ,
𝛿 is the overlap between 𝐶 and the last parent interval that
partially overlaps with𝐶 , 𝛽 is the union of the parent intervals
that overlap with 𝐶 , and 𝑛 is the number of cells in each low-
resolution visualization.

5.3 Tighter Bound Using Child Intervals

Query range C
2009 to 2014

Apr. Oct.
2015

β
γ δα

~ ~~ ~

Figure 11: Estimating the quality of 𝐸𝑉[1/2009,4/2015] .

In the running example, if 𝐸𝑉[2009,2014] cannot meet the

quality requirement𝜏 based on the lower bound in Lemma 5.1,

we want to include results in some of the months in year

2015 to compute an approximate visualization with a higher

quality. In order to decide the months of which we retrieve

records, we estimate its quality based on the LV’s of months

in 2015. For instance, we want to estimate the quality of

the visualization of data in 𝛼 ∪ 𝛾 = [1/2009, 4/2015]. As
illustrated in Figure 11, we have

𝐸𝑉𝛼∪𝛾 = 𝐸𝑉𝛼 ∪ 𝐵𝐸𝑉4/2015 = 𝐸𝑉𝛼 ∪ 𝐸𝑉𝛾 ,

and

𝐸𝑉𝛼∪𝛿 = 𝐸𝑉𝛼 ∪ 𝐵𝐸𝑉10/2015 = 𝐸𝑉𝛼 ∪ 𝐸𝑉𝛿 .

Recall that

J
(
𝑉 (𝑄), 𝐸𝑉𝛼∪𝛾

)
=

|𝐸𝑉𝛼 ∪ 𝐵𝐸𝑉
4/2015 |

|𝐸𝑉𝛼 ∪ 𝐵𝐸𝑉
10/2015 |

=
|𝐸𝑉𝛼 ∪ 𝐸𝑉𝛾 |
|𝐸𝑉𝛼 ∪ 𝐸𝑉𝛿 |

.

The following inequality shows a lower bound of the qual-

ity of 𝐸𝑉𝛼∪𝛾 , which is an extension of Inequality 5.

J
(
𝑉 (𝑄), 𝐸𝑉𝛼∪𝛾

)
≥

𝑛∑
𝑖=1

𝑚𝑎𝑥 {𝐿𝑉𝛼 (𝑐𝑖), 𝐿𝑉𝛾 (𝑐𝑖) }
𝑛∑
𝑖=1

𝑚𝑖𝑛{𝑚𝑎𝑥 {𝐿𝑉𝛼 (𝑐𝑖), 𝐿𝑉𝛾 (𝑐𝑖) } + (𝐿𝑉𝛿 (𝑐𝑖) − 𝐿𝑉𝛾 (𝑐𝑖)), 𝐿𝑉𝛽 (𝑐𝑖) }
. (6)

Similar to Inequality 5, 𝐿𝑉𝛾 and 𝐿𝑉𝛿 are the 𝐵𝐿𝑉 of the

last interval of 𝛾 and 𝛿 , respectively. The above result can be

generalized as the following lemma.

Lemma 5.2. Inequality 6 is valid for a general query. Those
symbols are defined in Lemma 5.1, and 𝛾 is a range of child
intervals in the last parent interval overlapping with 𝐶 .

5.4 Answering Requests Using MVS+
Algorithm 1 shows how to compute a visualization using

MVS
+
. It extends the earlier MVS-based algorithm by uti-

lizing the LV’s of child intervals to obtain a tighter bound

of the quality of an approximate visualization based on the

data from these intervals. Different strategies can be used in

Line 5 to extend the range of 𝑉𝛼 to include additional child

intervals 𝛾 to meet the 𝜏 requirement. One strategy is to

estimate the quality before sending the residual query. We

extend 𝛾 by one child interval each time and use Lemma 5.2

to calculate the quality bound ℓ of 𝐸𝑉𝛼∪𝛾 until we find a𝛾 that
meets 𝜏 , and then send the residual query. Another strategy

is progressively sending a residual query and estimating the

quality. That is, we send a query for the extended 𝛾 and use

Lemma 5.1 to calculate the quality of 𝐸𝑉𝛼′ , where 𝛼 ′ = 𝛼 ∪𝛾 ,

and repeat the process until we get an 𝐸𝑉𝛼′ that meets 𝜏 .

MVS+ storage and incremental maintenance. In the

full version [24], we show that MVS
+
can be efficiently stored

as tables in the database, and queried to return relevant data

for visualization. It can also be incrementally maintained

efficiently in the presence of data updates. We also report

the experimental results in [24].

Research 1: Crowdsourcing and Visualization SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

75

Algorithm 1: Visualization using MVS
+

Input: A visualization request𝑈 (𝑄, 𝜏) with a range

condition 𝐶 on the numerical attribute A;

Output: A visualization with a quality at least 𝜏 .

1 Let 𝐼1, . . . , 𝐼𝑚 be the parent intervals completely

covered by 𝐶;

2 𝑉𝛼 = 𝐸𝑉𝐼1 ∪ . . . ∪ 𝐸𝑉𝐼𝑚 ;

3 Use Lemma 5.1 to calculate a quality bound ℓ of 𝐸𝑉𝛼 ;

4 while ℓ < 𝜏 do
5 Increase the number of child intervals in 𝛾 in the

last parent interval partially overlapping with 𝐶 ;

6 Calculate a quality bound ℓ of 𝐸𝑉𝛼∪𝛾 ;

7 end
8 Retrieve data in residual intervals 𝛾 ;

9 Use the retrieved data to compute a visualization 𝑉 ;

10 return 𝐸𝑉𝛼 ∪𝑉 ;

6 Experiments
In this section we report experimental results of Marviq,

including a user study, to evaluate visualizations produced by

different techniques.We used three real datasets, as described

in Table 2. The first dataset, denoted as Foursquare [1], con-
tained Foursquare check-in geo-locations and times all over

the world from April 2012 to September 2013. The second

dataset, Tweet, included about 100 million tweets in the

U.S. from November 2015 to June 2017 collected using the

Twitter’s public API [42]. The third dataset, Taxi [43], was
the records of New York City Yellow Cab and Green Taxi

trips from January 2009 to June 2016. Each record contained

information about a taxi trip, including its pick-up and drop-

off geo-locations, times, trip distance, payment method, and

fare. For each dataset, we kept three attributes, including the

ID, event time, and geo-location.

Table 2: Datasets.
Dataset Record # (millions) Size (GB)

Foursquare 33 2.1

Tweet 100 18.0

Taxi 1,300 320.0

We used PostgreSQL 9.6 as the database with the follow-

ing configuration: shared memory was 8GB, work_mem was

256MB, and maintenance_work_mem was 2GB. We ran the

database on a server running CentOS 7 with an Intel Xeon E3

CPU, 64GB RAM, 1 GB Ethernet NIC, and a 1TB SSD drive.

For each dataset, a visualization request had a range condi-

tion on its time attribute with a B+ tree. We implemented

Marviq in a middleware layer written in Python v2.7 on the

same machine as the database.

6.1 User Study
We conducted a user study for two purposes: (1) to eval-

uate the quality of a visualization result computed by dif-

ferent techniques; and (2) to decide a similarity threshold

for a quality function given to Marviq. We considered Sam-

ple+Seek [12, 31] and VAS [35] as two representative, state-

of-the-art sampling-based techniques. Sample+Seek supports

ad-hoc conditions, and uses a quality function called distri-
bution precision to measure the similarity between two dis-

tributions. VAS does not support ad-hoc selection conditions

and does not provide similarity-based quality guarantee.

Setup. We invited 36 users to participate in the study.

They were 11 females and 25 males, with an age between 20

and 30. For the Tweet dataset, we selected four geographic ar-

eas, namely the contiguous United States, Los Angeles, New

York, and Chicago. We considered scatterplot and heatmap

as two commonly used spatial visualization types. For each

region and visualization type, we generated an exact visu-

alization for the data of two time ranges, namely a week

and a month. For each time range, we used Marviq to gen-

erate 9 approximate visualizations using 9 subintervals of

the same length. Thus the generated visualizations had an

increasing similarity to the exact one. For Sample+Seek and

VAS, we also generated 9 approximate visualizations using

9 samples with an increasing size, and these visualizations

had an increasing similarity too. Because VAS only supports

scatterplot, we did not use it to generate heatmap. In total,

we generated 376 images, including 16 exact visualizations

(2 time rages * 4 regions * 2 visualization types), 216 approx-

imate scatterplots in 24 groups (3 methods * 2 time rages *

4 regions), and 144 approximate heatmaps in 16 groups (2

methods * 2 time rages * 4 regions). Figure 12 shows example

visualizations of two geographic areas.

For each of four regions, for each of the two time ranges,

for each of the two visualization types, and for each of the

three techniques, we asked each user to look at the exact

visualization and 9 approximate ones, sorted in an increas-

ing order of their similarity, without telling the user which

method was used. Each approximate result had a degree be-

tween 1 and 9, while the least similar one had a degree of

1. We asked the user to specify the first visualization that

they thought was similar enough to the exact result. We

kept track of the degree of the “first good-enough” visualiza-

tion selected by the user. There was also an option for the

user if they did not see any “good enough” result. Each user

spent around 32–47 minutes to do the evaluation. In total

we collected 1,440 degree values (36 participants * 40 group

approximate visualizations).

Results. Table 3(a) shows the results for scatterplots. For
Sample+Seek and VAS, there were 44 and 19 cases where a

Research 1: Crowdsourcing and Visualization SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

76

Exact scatterplot

...

... Marviq

Sample
+Seek

Approximate Scatterplots (with increasing similarity)

1

1 2

2 9

9

... VAS

1 2 9

(a) Spatial scatterplot of the contiguous United States (US).

Exact Heatmap

...

... Marviq

Sample
+Seek

Approximate Heatmaps (with increasing similarity)

1

1 2

2 9

9

(b) Spatial heatmap of the New York (NY) region.

Figure 12: Example visualizations generated in the user
study using 1 month of tweets.

user did not find an acceptable approximate result, respec-

tively, while the number for Marviq was only 1. The average

degree of acceptable results was 8.6, 6.4, and 5.4 for Sam-

ple+Seek, VAS, and Marviq, respectively. Table 3(b) shows

the results of heatmaps. There was no case of unacceptable

heatmap for Marviq, and the number for Sample+Seek was

10. The average degree of acceptable results was 2.2 and

5.0 for Marviq and Sample+Seek, respectively. In terms of

the number of acceptable visualizations, users preferred vi-

sualizations generated by Marviq than those produced by

Sample+Seek. An interesting observation was that for Sam-

ple+Seek, a spatial point in an approximate scatterplot with

a lower degree could disappear in one with a higher degree.

This behavior made the results less preferred by some users.

For Marviq, the scatterplot of a larger degree was always a

superset of one with a smaller degree. We also found that

the method of computing the 𝜖 parameter in VAS was not

suitable in our settings, and we had to adjust it manually to

produce high-quality scatterplots.

We computed the Jaccard quality of results produced by

Marviq and VAS, whereas Sample+Seek used its proposed

distribution precision function. (The Jaccard quality of scat-

terplots with a distribution precision of 0.02 was about 70%.)

While they used different quality functions as well as dif-

ferent methods to generate the approximate visualizations,

the user study results helped us decide comparable degrees

of acceptable visualizations by these techniques, which was

used in the performance comparison reported in Section 6.4.

Table 3: User study results. Each cell has values “a/b/c” for
Marviq (“a”), Sample+Seek (“b”), and VAS (“c”), respectively.

(a) Scatterplot

US NY LA Chicago

of acceptable results 71/65/55 72/56/70 72/54/72 72/69/72

of unacceptable

results
1/7/17 0/16/2 0/18/0 0/3/0

Average degree of

acceptable results
5.5/8.2/9.0 5.1/8.8/6.0 6.1/9.0/5.2 4.9/8.3/5.5

Average quality of

acceptable results

65%/0.02/

73%

57%/0.018/

60%

70%/0.015/

65%

53%/0.02/

47%

(b) Heatmap

US NY LA Chicago

of acceptable results 72/72/- 72/72/- 72/62/- 72/72/-

of unacceptable

results
0/0/- 0/0/- 0/10/- 0/0/-

Average degree of

acceptable results
2.0/3.9/- 1.8/3.2/- 2.8/9.0/- 2.0/4.0/-

Average quality of

acceptable results
30%/0.06/- 25%/0.03/- 37%/0.015/- 30%/0.06/-

6.2 Construction Time and Storage Space
We used the Taxi dataset to evaluate the time and space

to construct and store MVS. We varied the parent interval

length from 1 day to 5 days, and varied the visualization

resolution from 1440 ∗ 900 to 2880 ∗ 1620, and each point (EV

cell) occupied 4*4 pixels. The results are shown in Figure 13.

 0
 400
 800

 1200
 1600
 2000
 2400
 2800
 3200

 0 1 2 3 4 5 6

Co
ns

tr
uc

tio
n

tim
e

(s
)

Parent interval length (days)

1440*900

1920*1080

2880*1620

(a) Construction time (very similar
for all resolutions)

 0
 300
 600
 900

 1200
 1500
 1800
 2100
 2400

 0 1 2 3 4 5 6

St
or

ag
e

si
ze

 (
M

B)

Parent interval length (days)

1440*900

1920*1080

2880*1620

(b) Storage size

Figure 13: Construction and storage of MVS.

For each parent interval, the computation of its EV con-

sisted of three steps, including retrieving its query results

from the database, computing the EV, and writing the EV

into the database. Experiments showed that 99% of the total

time was spent in the first step. As we increased the length

of each parental interval, the computation of each EV took

longer time, and the total construction time was stable, indi-

cating that most of the time was spent on retrieving the data

from the disk inside the database and sending the data to the

middleware. As shown in Figure 13(b), the size decreased

as the parent-interval length increased, since more records

Research 1: Crowdsourcing and Visualization SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

77

mapped to the same pixel. The size of MVS was relatively

very small compared to the original data size. Also the MVS

size increased sublinearly as the visualization resolution in-

creased. The results for the other two data sets were similar,

and were omitted due to the limited space. In the follow-

ing experiments, we set the visualization resolution to be

1920 ∗ 1080, a resolution for many displays.

To evaluate the performance of different construction

strategies, we used two months of taxi data. We constructed

MVS
+
with 10 parent intervals with a length of 1 day and

10 child intervals for each parent interval. We used the total

size of this structure as the storage budget. We created a

workload of 1, 000 queries with 𝜏 = 0.9, and each of them

started within the second and third parent intervals and

ended within the fourth and fifth parent intervals, with a

length varied between 0.5 and 2 parent intervals. We first

implemented a naive method, called FixedIntervals, which
divided the attribute domain to 10 parent intervals evenly

without considering any query workload. We then imple-

mented the two construction strategies described in Sec-

tion 3.2. One, called Offline, used the input query workload

to construct MVS
+
within the storage budget. The other one,

called Online, adjusted the structures adaptively based on

the recent 100 queries. Table 4 shows the performance of

these strategies, including the number of records in the con-

structed MVS
+
, the construction time, and the percentage

of queries that could be answered by using EV’s only with-

out retrieving additional records from the original table. Not

surprisingly, the Offline strategy performed the best given

its knowledge about the workload. The Online strategy was

much better than FixedIntervals by adaptively adjusting its

intervals based on recent queries.

Table 4: Performance of MVS+-construction strategies.
FixedIntervals Offline Online

MVS+ size (record #) 184K 82.8K 110K

Mean response time (s) 0.95 0.34 0.77

% of queries answerable using EV’s 48.4% 88.9% 81.6%

6.3 Visualization Performance
We created a workload of visualization requests as follows.

We used the parent-interval size as a length unit to generate

query intervals.We varied the query length from 1 to 5 parent

intervals, and for each of them, we randomly generated 1, 000

queries with that length.

Time of computing an exact visualization result. We

evaluated the performance of generating an exact result for

a visualization request as described in Section 2. Figure 14

shows the response times of queries with different lengths

on the three datasets. We can see that the runng time of

the original query increased linearly as its length increased.

However, the running time of using MVS in Marviq was very

stable, which varied between 0.2𝑠 to 0.5𝑠 for the three data

sets. The time included the time of retrievingMVS data of the

contained intervals (𝐼𝛼 in Figure 3) and the time of retrieving

records of the residual intervals (𝐼𝛽1 and 𝐼𝛽2) from the raw

data table, which was the main bottleneck. This bottleneck

is a motivation of computing approximate visualizations to

reduce this time to have a higher query throughput and

increase the responsiveness of the system, which is needed

for applications with many concurrent visualization requests.

Comparing MVS and MVS+. To have a fair comparison

between MVS and MVS
+
, we wanted to make MVS

+
have

the same size as MVS. Three factors affect the MVS
+
size,

including the parent interval size, the child interval number

within a parent interval, and the LV resolution. Experiments

showed that the parent interval size had the greatest impact

on the performance. Therefore, we fixed the child interval

number within a parent interval to be 10 and LV resolution

to be 32*18, and we used the following ratio to control the

MVS
+
size :

𝑚 =
parent interval length of MVS

+

parent interval length of MVS

.

For each data set, we first constructed an MVS. We varied

the ratio value𝑚 for anMVS
+
to achieve a similar storage size

by adjusting the cell resolution in each LV. Each visualization

request used 𝜏 = 70% as its quality requirement. The average

response time of these requests is shown in Figure 15. We

can see that the MVS
+
structure always achieved a lower

response time than MVS, and the reduction ratio varied from

5% to 54%. As𝑚 increased, the number of parent intervals

in MVS
+
is smaller than MVS, thus LVs can have higher

resolution. The response time using MVS
+
first decreased

because higher LV resolution gave better bound estimation,

but then increased because too long parent intervals of MVS
+

reduced the possibility of queries benefit from the EVs. There

was an optimal 𝑚 value for each dataset that can achieve

the best performance. Since MVS
+
demonstrated superiority

than MVS, in the remaining experiments, we mainly focused

on this structure.

Time saving using MVS+.We can use MVS
+
to reduce the

response time further when users can accept approximate

visualizations. For each parent interval length, we ran 1, 000

queries and measured their average response time. We used

an optimal𝑚 ratio value to maximize the performance for

each data set. Figure 16 shows the results for different quality

values 𝜏 = 80%, 70%, and 60%. We can see that the response

time decreased as the query length increased. The reason is

that as the query length increased, more EV’s can be used to

generate the approximate visualization, and less data needed

to be retrieved from the data table. These EV’s can be re-

trieved from the database very efficiently. For instance, on

Research 1: Crowdsourcing and Visualization SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

78

 0

 0.5

 1

 1.5

 2

 2.5

R
es

po
ns

e
tim

e(
s)

Query length

Original query
Accessing base table

Accessing MVS

54321

(a) Foursquare

 0

 0.5

 1

 1.5

 2

 2.5

R
es

po
ns

e
tim

e(
s)

Query length

Original query
Accessing base table

Accessing MVS

54321

(b) Tweet

 0

 0.5

 1

 1.5

 2

 2.5

R
es

po
ns

e
tim

e(
s)

Query length

Original query
Accessing base table

Accessing MVS

54321

(c) Taxi

Figure 14: Response times of computing an exact scatterplot using MVS.

 0

 0.1

 0.2

 0.3

0 1.05 1.1 1.15 1.2 1.25 1.3

R
es

po
ns

e
tim

e
(s

)

m

MVS

MVS+

(a) Foursquare

 0

 0.1

 0.2

 0.3

0 1.05 1.1 1.15 1.2 1.25 1.3

R
es

po
ns

e
tim

e
(s

)

m

MVS

MVS+

(b) Tweet

 0

 0.1

 0.2

 0.3

0 1.05 1.1 1.15 1.2 1.25 1.3

R
es

po
ns

e
tim

e
(s

)

m

MVS

MVS+

(c) Taxi

Figure 15: Response time of computing an approximate result using MVS and MVS+ of different𝑚 ratios (𝜏 = 70%).
the Taxi dataset, by using MVS

+
with a size less than 0.5%

of the size of 1.3 billion records, Marviq computed an exact

result using 0.4𝑠 , and an approximate visualization of quality

𝜏 = 70% in less than 0.1𝑠 .

6.4 More Comparison with Sample+Seek
Since a heatmap can be viewed as a distribution of the

grid cells, Sample+Seek can used to compute an approximate

heatmap. We implemented Sample+Seek on a heatmap (with

a resolution of 100*100) using its proposed distribution pre-

cision function. It precomputed a sample based on a given

distance 𝜖 (corresponding to our 1 − 𝜏) between the original

and approximate visualizations. We used the twitter data set,

varied 𝜖 from 0.100 to 0.025, and used a confidence 0.95. For

each 𝜖 , we created the corresponding sample. The 𝜖 , sam-

ple size, and sampled record number are shown in Table 5.

Since we needed to apply a selection condition on the sam-

ple before a group-by, it was more efficient to store it in the

database than storing it in memory, so that we can utilize an

index on the selection attribute to accelerate visualization

requests. To give Sample+Seek its best setting, we stored its

sample in the database.

Table 5: Using Sample+Seek on tweets.
Distance 𝜖 (our 1 − 𝜏) 0.025 0.050 0.075 0.100

Sample size (MB) 550 137 62 34

Record # (millions) 16 4 1.78 1

We constructed an MVS
+
structure using 1, 000 parent

intervals, and each interval was divided into 10 child inter-

vals, with a total size of 129MB. We created a workload of

queries with a length ranged from 1 to 10 parent intervals,

and there were 100 queries for each length. Given a distance

𝜖 , Sample+Seek accessed the corresponding sample table to

compute an approximate visualization. Marviq treated 𝜖 as

the quality requirement 1−𝜏 , used the EV’s in MVS
+
to com-

pute an initial approximation, and used a bound to decide

whether to retrieve more data. The experiments showed that

the bound derived using our method was loose, causing Mar-

viq to retrieve all the records in the residual child interval

and produce an exact visualization. In other words, in this

use case, the main benefit of Marviq was the precomputed

results in the EV’s, and the produced result had a distance

𝜖 = 0 (no error). Figure 17 shows the response time for differ-

ent query lengths. The response time was stable for Marviq.

As 𝜖 increased, the time of Sample+Seek decreased and the

sample size also decreased. Marviq’s time was around 0.48𝑠 ,

with a perfect visualization (𝜖 = 0). A main difference is that

Marviq produced an exact visualization with comparable

index size and response time, while Sample+Seek generated

an approximate visualization with a probabilistic quality.

In Sample+Seek, the minimum number of records in the

sample to get an 𝜖-approximate visualization is𝑂 (1/𝜖2). This
number does not depend on the number of groups, which is

very critical in spatial visualization. Therefore, distribution

precision has its limitations to be used as a quality function

for spatial visualization. Figure 18 shows the response time

of computing an approximate scatterplot in the user study.

Recall that the average degree of acceptable scatterplots of

Sample+seek was 8.6, and the corresponding sample size was

1.5GB. Sample+Seek took about 3.5 seconds to return a result.

In contrast, the average degree of acceptable scatterplots of

Marviq was 5.4, and it can return a result in less than 0.2𝑠

Research 1: Crowdsourcing and Visualization SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

79

 0

 0.1

 0.2

 0.3

 0.4

 0 1 2 3 4 5 6

R
es

po
ns

e
tim

e(
s)

Query range length

τ=80%
τ=70%
τ=60%

(a) Foursquare (m=1.1)

 0

 0.1

 0.2

 0.3

 0.4

 0 1 2 3 4 5 6

R
es

po
ns

e
tim

e(
s)

Query range length

τ=80%
τ=70%
τ=60%

(b) Tweet (m=1.15)

 0

 0.1

 0.2

 0.3

 0.4

 0 1 2 3 4 5 6

R
es

po
ns

e
tim

e(
s)

Query range length

τ=80%
τ=70%
τ=60%

(c) Taxi (m=1.1)

Figure 16: Response time of computing an approximate scatterplot using MVS+.

 0

 0.5

 1

 1.5

 0 1 2 3 4 5 6 7 8 9 10

R
es

po
ns

e
tim

e
(s

)

Query range length

Marviq (exact)
SS: ε=0.025

SS: ε=0.05
SS: ε=0.075

Figure 17: Response time of Marviq for an exact result and
Sample+Seek (“SS”) for an approximate result with a proba-
bilistic quality.
with an MVS of 129MB. The comparison results of heatmap

were similar to Figure 18, and omitted due to limited space.

 0

 1

 2

 3

 4

 0 1 2 3 4 5 6 7 8 9 10

Avg. degree of
acceptable results

R
es

po
ns

e
tim

e
(s

)

Degree of approximate scatterplot

Sample+seek
Marviq

Figure 18: Response time of approximate scatterplots (1
week of tweets).

6.5 More Comparison with VAS
VAS [35] is a technique that relies on sampling to generate

an approximate spatial visualization. Notice that VAS and

Marviq have different settings. VAS focused on sampling

without any pre-computation. Marviq assumes a predefined

quality function and relies on pre-computed results to accel-

erate real-time visualization requests. We did an experiment

with the purpose of evaluating the tradeoffs between these

two approaches in terms of their storage size and running

time for the case of a given quality function. In the exper-

iment, we randomly generated queries of a length ranged

from 1 to 3 parent intervals. For each query, we used all its

query results as the original data, constructed 3 VAS sam-

ples with a ratio varied from 5% to 15%. For each sample,

we computed the Jaccard similarity between its scatterplot

and the one using all the results. We then formulated a cor-

responding visualization request using the original query

and this quality as the 𝜏 requirement, and used MVS
+
to

compute an approximate visualization that met the quality

requirement. The results in Table 6 show that for the same

quality requirement, Marviq significantly reduced the query

response time (from more than 1,000 seconds to less than

1s.)

Table 6: VAS versus Marviq (using MVS+).
VAS sample ratio 5% 10% 15%

VAS sample quality 85.5% 92.9% 94.8%

VAS sampling time 1,323.3s 1,469.9s 2,018.7s

Marviq response time 0.21s 0.24s 0.30s

MVS+ size ratio to original data 0.5% 0.5% 0.5%

We also report the experimental results of other quality

functions in [24].

7 Conclusions
In this paper we studied the problem of efficient spatial

visualization of a large data set stored in a database using

SQL queries with ad-hoc range conditions on numerical at-

tributes. We presented a novel middleware-based technique

called Marviq. It divides the selection-attribute domain into

intervals, and precomputes and stores a visualization in a

structure called MVS. We show how to use MVS to com-

pute an exact visualization or an approximate result with a

quality guarantee based on a similarity function and a user-

specified threshold. We showed a family of functions with

certain properties that can use this technique. We presented

an improvement by dividing the MVS intervals into smaller

intervals and materializing low-resolution visualization for

these intervals. We reported the results of an extensive eval-

uation of Marviq, including a user study, and show its high

performance in both space and time.

8 Acknowledgments
We want to thank the anonymous reviewers for their con-

structive comments, Sadeem Alsudais at UC Irvine for her

insightful comments, and Boling Ding at Alibaba Group for

helpful discussions.

Research 1: Crowdsourcing and Visualization SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

80

References
[1] Foursquare dataset, 2018. https://enterprise.foursquare.com/products/

places.

[2] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica.

Blinkdb: queries with bounded errors and bounded response times on

very large data. In Eighth Eurosys Conference 2013, EuroSys ’13, Prague,
Czech Republic, April 14-17, 2013, pages 29–42, 2013.

[3] L. Battle, R. Chang, and M. Stonebraker. Dynamic prefetching of data

tiles for interactive visualization. In Proceedings of the 2016 Interna-
tional Conference on Management of Data, SIGMOD Conference 2016,
San Francisco, CA, USA, June 26 - July 01, 2016, pages 1363–1375, 2016.

[4] E. Bertini and G. Santucci. Give chance a chance- modeling density to

enhance scatter plot quality through random data sampling. Informa-
tion Visualization, 5(2):95–110, 2006.

[5] M. Budiu, P. Gopalan, L. Suresh, U. Wieder, H. Kruiger, and M. K.

Aguilera. Hillview: A trillion-cell spreadsheet for big data. PVLDB,
12(11):1442–1457, 2019.

[6] M. Budiu, R. Isaacs, D. Murray, G. D. Plotkin, P. Barham, S. Al-Kiswany,

Y. Boshmaf, Q. Luo, and A. Andoni. Interacting with large distributed

datasets using sketch. In E. Gobbetti and W. Bethel, editors, EGPGV16:
Eurographics Symposium on Parallel Graphics and Visualization, Gronin-
gen, The Netherlands, June 6-10, 2016, pages 31–43. Eurographics Asso-
ciation, 2016.

[7] S. Chan, L. Xiao, J. Gerth, and P. Hanrahan. Maintaining interactivity

while exploring massive time series. In Proceedings of the IEEE Sym-
posium on Visual Analytics Science and Technology, IEEE VAST 2008,
Columbus, Ohio, USA, 19-24 October 2008, pages 59–66. IEEE Computer

Society, 2008.

[8] D. Cheng, P. Schretlen, N. Kronenfeld, N. Bozowsky, and W. Wright.

Tile based visual analytics for twitter big data exploratory analysis. In

Proceedings of the 2013 IEEE International Conference on Big Data, 6-9
October 2013, Santa Clara, CA, USA, pages 2–4, 2013.

[9] A. Crotty, A. Galakatos, E. Zgraggen, C. Binnig, and T. Kraska. Vizdom:

Interactive analytics through pen and touch. PVLDB, 8(12):2024–2027,
2015.

[10] A. Crotty, A. Galakatos, E. Zgraggen, C. Binnig, and T. Kraska. The

case for interactive data exploration accelerators (ideas). In C. Binnig,

A. Fekete, and A. Nandi, editors, Proceedings of theWorkshop on Human-
In-the-Loop Data Analytics, HILDA@SIGMOD 2016, San Francisco, CA,
USA, June 26 - July 01, 2016, page 11. ACM, 2016.

[11] C. A. de Lara Pahins, S. A. Stephens, C. Scheidegger, and J. L. D. Comba.

Hashedcubes: Simple, low memory, real-time visual exploration of big

data. IEEE Trans. Vis. Comput. Graph., 23(1):671–680, 2017.
[12] B. Ding, S. Huang, S. Chaudhuri, K. Chakrabarti, and C.Wang. Sample +

seek: Approximating aggregates with distribution precision guarantee.

In Proceedings of the 2016 International Conference on Management of
Data, SIGMOD Conference 2016, San Francisco, CA, USA, June 26 - July
01, 2016, pages 679–694, 2016.

[13] A. Eldawy, M. F. Mokbel, and C. Jonathan. Hadoopviz: A mapreduce

framework for extensible visualization of big spatial data. In 32nd
IEEE International Conference on Data Engineering, ICDE 2016, Helsinki,
Finland, May 16-20, 2016, pages 601–612, 2016.

[14] D. Fisher, I. O. Popov, S. M. Drucker, and m. c. schraefel. Trust me, i’m

partially right: incremental visualization lets analysts explore large

datasets faster. In CHI Conference on Human Factors in Computing
Systems, CHI ’12, Austin, TX, USA - May 05 - 10, 2012, pages 1673–1682,
2012.

[15] A. Galakatos, A. Crotty, E. Zgraggen, C. Binnig, and T. Kraska. Revisit-

ing reuse for approximate query processing. PVLDB, 10(10):1142–1153,
2017.

[16] P. Godfrey, J. Gryz, and P. Lasek. Interactive visualization of large data

sets. IEEE Trans. Knowl. Data Eng., 28(8):2142–2157, 2016.

[17] I. Goiri, R. Bianchini, S. Nagarakatte, and T. D. Nguyen. Approxhadoop:

Bringing approximations to mapreduce frameworks. In Proceedings
of the Twentieth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’15, Istanbul,
Turkey, March 14-18, 2015, pages 383–397, 2015.

[18] T. Guo, K. Feng, G. Cong, and Z. Bao. Efficient selection of geospatial

data on maps for interactive and visualized exploration. In Proceedings
of the 2018 International Conference on Management of Data, SIGMOD
Conference 2018, Houston, TX, USA, June 10-15, 2018, pages 567–582,
2018.

[19] J. Im, F. G. Villegas, and M. J. McGuffin. Visreduce: Fast and responsive

incremental information visualization of large datasets. In X. Hu, T. Y.

Lin, V. V. Raghavan, B. W.Wah, R. A. Baeza-Yates, G. C. Fox, C. Shahabi,

M. Smith, Q. Yang, R. Ghani, W. Fan, R. Lempel, and R. Nambiar, editors,

Proceedings of the 2013 IEEE International Conference on Big Data, 6-9
October 2013, Santa Clara, CA, USA, pages 25–32. IEEE, 2013.

[20] Jia Yu and M. Sarwat. Accelerating spatial data visualization dash-

boards via a materialized sampling approach. In Proceedings of the
International Conference on Data Engineering, ICDE, 2020.

[21] L. Jiang, P. Rahman, and A. Nandi. Evaluating interactive data sys-

tems: Workloads, metrics, and guidelines. In Proceedings of the 2018
International Conference on Management of Data, SIGMOD Conference
2018, Houston, TX, USA, June 10-15, 2018, pages 1637–1644, 2018.

[22] N. Kamat, P. Jayachandran, K. Tunga, and A. Nandi. Distributed and

interactive cube exploration. In I. F. Cruz, E. Ferrari, Y. Tao, E. Bertino,

and G. Trajcevski, editors, IEEE 30th International Conference on Data
Engineering, Chicago, ICDE 2014, IL, USA, March 31 - April 4, 2014, pages
472–483. IEEE Computer Society, 2014.

[23] T. Kraska. Northstar: An interactive data science system. PVLDB,
11(12):2150–2164, 2018.

[24] L. Dong, Q. Bai, T. Kim, T. Chen, W. Liu and C. Li. Marviq: Quality-

Aware Geospatial Visualization of Range-Selection Queries Using Ma-

terialization (Full Version). UC Irvine Technical Report, 2020.

[25] D. J. L. Lee and A. G. Parameswaran. The case for a visual discovery

assistant: A holistic solution for accelerating visual data exploration.

IEEE Data Eng. Bull., 41(3):3–14, 2018.
[26] K. Li and G. Li. Approximate query processing: What is new and where

to go? - A survey on approximate query processing. Data Science and
Engineering, 3(4):379–397, 2018.

[27] L. D. Lins, J. T. Klosowski, and C. E. Scheidegger. Nanocubes for real-

time exploration of spatiotemporal datasets. IEEE Trans. Vis. Comput.
Graph., 19(12):2456–2465, 2013.

[28] Z. Liu and J. Heer. The effects of interactive latency on exploratory

visual analysis. IEEE Trans. Vis. Comput. Graph., 20(12):2122–2131,
2014.

[29] Z. Liu, B. Jiang, and J. Heer. imMens: Real-time visual querying of big

data. Comput. Graph. Forum, 32(3):421–430, 2013.

[30] MapD demo. https://www.mapd.com/demos/taxis.

[31] D. Moritz, D. Fisher, B. Ding, and C. Wang. Trust, but verify: Opti-

mistic visualizations of approximate queries for exploring big data. In

Proceedings of the 2017 CHI Conference on Human Factors in Computing
Systems, Denver, CO, USA, May 06-11, 2017., pages 2904–2915, 2017.

[32] D. Moritz, B. Howe, and J. Heer. Falcon: Balancing interactive latency

and resolution sensitivity for scalable linked visualizations. In Pro-
ceedings of the 2019 CHI Conference on Human Factors in Computing
Systems, CHI 2019, Glasgow, Scotland, UK, May 04-09, 2019, page 694,
2019.

[33] B. Mozafari, J. Ramnarayan, S. Menon, Y. Mahajan, S. Chakraborty,

H. Bhanawat, and K. Bachhav. Snappydata: A unified cluster for

streaming, transactions and interactice analytics. In CIDR 2017, 8th
Biennial Conference on Innovative Data Systems Research, Chaminade,
CA, USA, January 8-11, 2017, Online Proceedings, 2017.

Research 1: Crowdsourcing and Visualization SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

81

https://enterprise.foursquare.com/products/places
https://enterprise.foursquare.com/products/places
https://www.mapd.com/demos/taxis

[34] T. N. Pappas, R. J. Safranek, and J. Chen. Perceptual criteria for image

quality evaluation. Handbook of image and video processing, pages
669–684, 2000.

[35] Y. Park, M. J. Cafarella, and B. Mozafari. Visualization-aware sampling

for very large databases. In 32nd IEEE International Conference on
Data Engineering, ICDE 2016, Helsinki, Finland, May 16-20, 2016, pages
755–766, 2016.

[36] Y. Park, B.Mozafari, J. Sorenson, and J.Wang. Verdictdb: Universalizing

approximate query processing. In Proceedings of the 2018 International
Conference on Management of Data, SIGMOD Conference 2018, Houston,
TX, USA, June 10-15, 2018, pages 1461–1476, 2018.

[37] J. Peng, D. Zhang, J. Wang, and J. Pei. AQP++: connecting approxi-

mate query processing with aggregate precomputation for interactive

analytics. In Proceedings of the 2018 International Conference on Man-
agement of Data, SIGMOD Conference 2018, Houston, TX, USA, June
10-15, 2018, pages 1477–1492, 2018.

[38] F. Psallidas and E. Wu. Provenance for interactive visualizations. In

Proceedings of the Workshop on Human-In-the-Loop Data Analytics,
HILDA@SIGMOD 2018, Houston, TX, USA, June 10, 2018, pages 9:1–9:8,
2018.

[39] S. Rahman, M. Aliakbarpour, H. Kong, E. Blais, K. Karahalios, A. G.

Parameswaran, and R. Rubinfeld. I’ve seen "enough": Incrementally

improving visualizations to support rapid decision making. PVLDB,
10(11):1262–1273, 2017.

[40] E. A. Rundensteiner, M. O. Ward, Z. Xie, Q. Cui, C. V. Wad, D. Yang,

and S. Huang. Xmdvtool
q
: : quality-aware interactive data exploration.

In Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, Beijing, China, June 12-14, 2007, pages 1109–1112,
2007.

[41] W. Tao, X. Liu, Y. Wang, L. Battle, Ç. Demiralp, R. Chang, and M. Stone-

braker. Kyrix: Interactive pan/zoom visualizations at scale. Comput.
Graph. Forum, 38(3):529–540, 2019.

[42] 2018. https://developer.twitter.com/en.html.

[43] 2018. https://github.com/fivethirtyeight/uber-tlc-foil-response.

[44] L. Wang, R. Christensen, F. Li, and K. Yi. Spatial online sampling and

aggregation. PVLDB, 9(3):84–95, 2015.
[45] Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, et al. Image

quality assessment: from error visibility to structural similarity. IEEE
transactions on image processing, 13(4):600–612, 2004.

[46] Z. Wang, N. Ferreira, Y. Wei, A. S. Bhaskar, and C. Scheidegger. Gauss-

ian cubes: Real-time modeling for visual exploration of large multidi-

mensional datasets. IEEE Trans. Vis. Comput. Graph., 23(1):681–690,
2017.

[47] L. Weng and B. Preneel. A secure perceptual hash algorithm for image

content authentication. In B. De Decker, J. Lapon, V. Naessens, and

A. Uhl, editors, Communications and Multimedia Security, pages 108–
121, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[48] J. Yu, R. Moraffah, and M. Sarwat. Hippo in action: Scalable indexing of

a billion new york city taxi trips and beyond. In 33rd IEEE International
Conference on Data Engineering, ICDE 2017, San Diego, CA, USA, April
19-22, 2017, pages 1413–1414. IEEE Computer Society, 2017.

[49] J. Yu, Z. Zhang, and M. Sarwat. Geosparkviz: a scalable geospatial data

visualization framework in the apache spark ecosystem. In Proceedings
of the 30th International Conference on Scientific and Statistical Database
Management, SSDBM 2018, Bozen-Bolzano, Italy, July 09-11, 2018, pages
15:1–15:12, 2018.

[50] K. Zeng, S. Agarwal, A. Dave, M. Armbrust, and I. Stoica. G-OLA:

generalized on-line aggregation for interactive analysis on big data.

In Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, Melbourne, Victoria, Australia, May 31 - June 4,
2015, pages 913–918, 2015.

[51] X. Zhang, J. Wang, J. Yin, and S. Ji. Sapprox: Enabling efficient and ac-

curate approximations on sub-datasets with distribution-aware online

sampling. PVLDB, 10(3):109–120, 2016.

Research 1: Crowdsourcing and Visualization SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

82

https://developer.twitter.com/en.html
https://github.com/fivethirtyeight/uber-tlc-foil-response

	Abstract
	1 Introduction
	1.1 Related Work

	2 Marviq Overview
	3 Quality-Aware Approximate Visualization
	3.1 Jaccard-Based Visualization
	3.2 Constructing a High-Quality MVS

	4 Generalizing Marviq
	4.1 Multi-attribute Conditions
	4.2 General Quality Functions
	4.3 Heatmap Visualization
	4.4 Supporting Zooming and Panning

	5 Improving MVS Using Low-Resolution Visualizations
	5.1 Adding Low-Resolution Visualizations
	5.2 Tighter Quality Bound of EV Results
	5.3 Tighter Bound Using Child Intervals
	5.4 Answering Requests Using MVS+

	6 Experiments
	6.1 User Study
	6.2 Construction Time and Storage Space
	6.3 Visualization Performance
	6.4 More Comparison with Sample+Seek
	6.5 More Comparison with VAS

	7 Conclusions
	8 Acknowledgments
	References

