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ABSTRACT

In this paper we study the problem of supporting similarity
queries on a large number of records using a vector space
model, where each record is a bag of tokens. We consider sim-
ilarity functions that incorporate non-negative global token
weights as well as record-specific token degrees. We develop a
family of algorithms based on an inverted index for large data
sets, especially for the case of using external storage such as
hard disks or flash drives, and present pruning techniques
based on various bounds to improve their performance. We
formally prove the correctness of these techniques, and show
how to achieve better pruning power by iteratively tightening
these bounds to exactly filter dissimilar records. We conduct
an extensive experimental study using real, large-scale data
sets based on different storage platforms, including memory,
hard disks, and flash drives. The results show that these
algorithms and techniques can efficiently support similarity
queries on large data sets.
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1 INTRODUCTION

In recent years, we see an increasing number of applications
that need to process large collections of records that are
sets, bags, or strings. Many of them need to compute the
similarity between two records, where each record consists
of elements such as keywords. Depending on the application
domain, a record can be a publication title, an abstract, a
product review, a set of grams of a string, a vector of bits for
a molecule, or a set of features of a multimedia object (e.g.,
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image, video, or audio) [2, 4, 27, 35, 37, 41]. The following
are two illustrative examples.

The human resource (HR) department of a large company
has a database of its employees, where each employee has
a list of professional skills such as marketing, negotiation,
project management, python, C++, and Javascript. An HR
manager often wants to find employees who have skills similar
to a particular employee, or all pairs of employees with similar
skills. In this case, two employees are considered to be relevant
as long as they have enough common skills, even if their skill
sets are not exactly the same. As another example, consider a
collection of publications, where each publication has a title.
We want to find publications with a title similar to a given
title even if their titles are not exactly the same.

As shown in the examples, one general problem in these
applications is to find those entities that are similar to each
other. The concept of “similarity” can be very domain spe-
cific and semantically rich. In the first example, if employees
have different proficiencies on the same skill, how does the
HR manager decide which employees are more “similar” to
a particular employee? More interestingly, if the manager
prefers some skills and cares less about others, how can we
take his/her preference into consideration when doing the
query? Similar problems exist in other applications, which
require a flexible and powerful similarity function. Many of
these applications such as information retrieval and bioin-
formatics [24] need the support of similarity queries with
semantically rich functions that consider token weights, such
as term weights [17] and entity probabilities [41]. Many of
them are using a tf-idf weighting method [36].

In this paper, we study the problem of similarity queries on
vector space models. Compared to commonly used functions
such as Jaccard and cosine, a vector space model is general
in two aspects. First, it allows a token to have a weight, and
different tokens can have different weights. Most existing
functions assume all the tokens have the same weight. This
flexibility is particularly important for applications where we
want to assign different importance values to different tokens,
such as employee skills in the above example, and inverse
document frequencies (idf) in document search. Second, it
can also allow a record-specific value per token, such as token
frequencies (tf) in document search, and this flexiblity is
particular important for long records with many elements. In
Section 2.3 we present a detailed analysis of the benefits of
vector space models compared to existing similarity functions.

We first formally define the problem of similarity queries
on collections of records using a vector space model (Sec-
tion 2). We then address how to support similarity queries,
and focus on efficiency issues for large data sets, especially

Research 9: Similarity Queries & Estimation SIGMOD’18, June 10-15, 2018, Houston, TX, USA

873



when using external storage such as hard disks or flash drives.
We give a naive algorithm on top of an inverted index, and
its main idea is to process the tokens in the query one by one,
and scan their inverted lists to compute the similarity of each
candidate record (Section 3.1). To improve its performance,
we first present a technique to prune candidate records based
on a bound using the remaining tokens for each candidate
(Section 3.2). Next we develop two novel techniques that can
effectively prune candidates based on bounds on the records
and query tokens (Section 4). In Section 5 we further im-
prove these techniques by iteratively tightening these bounds
to achieve better pruning power. We conducted extensive
experiments using real, large data sets on various storage
platforms, including memory, hard disks, and SSD. The re-
sults showed that these algorithms can support similarity
queries efficiently on large data sets (Section 6).

1.1 Related Work

The idea of discovering and exploiting term weights is a
fundamental problem in the field of information retrieval.
Besides the two key concepts of term frequency and inverse
document frequency [26], recent methods tend to employ
probabilistic models [37], frequent item mining [4], and other
specified weighting strategies [27]. Together with advanced
applications [22, 35] of emerging Web-scale content mining
[41], many weighting methods for effective crowd extraction
[2] have introduced new challenges across various domains.
Chemical weights [24] in molecular and elements also benefit
from the efficient processing of weighted similarity retrieval.

There are various kinds of similarity functions on strings
and sets. For similarity search, many algorithms used a gram-
based approach (e.g., [6, 29, 30, 34, 40, 51]). For similarity
join, filtering techniques are widely used. For instance, an
algorithm called gram-count [18] utilizes the fact that for
two strings to be similar based on a threshold δ, their length
difference should be within δ. Length filtering uses the length
of a string to reduce the number of candidates.

Pruning techniques are generally used in the context of
similarity queries, particularly joins, and many algorithms
were developed by assuming the data can fit in main mem-
ory. Prefix filtering [5, 9, 12, 31, 38, 39, 44, 46, 49, 50]
utilizes the fact that two strings are similar only if they
share some commonality in their prefixes. Many algorithms
have been proposed based on prefix, such as AllPair [5], P-
PJoin+ [50], GroupJoin [9], MPJoin [39], PartitionJoin [14],
SkippingScheme [47], MPJoin-PEL [31], ED-Join [49], Adap-
tJoin [44], QChunk [38], VChunk [46], and Pivotal prefix [12].
Other related algorithms exist such as M-Tree [11], trie-
Join [16], and PartEnum [3]. Besides the experimental s-
tudies [23, 32], there is a recent survey about string sim-
ilarity queries [52]. For parallel similarity join, there are
a number of studies that utilize the MapReduce frame-
work [1, 13, 15, 25, 33, 42, 43, 48], in which many studies use
the prefix to prune dissimilar records.

Many of these studies also addressed the pruning effective-
ness in string similarity search [52]. In large-scale similarity

search, a package called Flamingo [8] supports indexes on
external storage to deal with the case of limited memory. It
supports several count-based similarity functions based on
set and bag semantics. Partition and merging optimizations
have been introduced solve the so-called T-occurrence prob-
lem [29]. The research in [7] presented a general list-merging
strategy for count-based selections using external storage.

By utilizing information retrieval factors [21], hybrid mea-
surements have recently emerged in the literature [20, 45].
The effectiveness of a variety of similarity functions have been
measured in [10] based on different data sets. The research
in [19] incorporated token weights into an inverted index
in a manner to guarantee the quality of subsequent query
answers. It can be seen as a special case of our p-norm simi-
larity function. Wang et al. [45] integrated weighted grams
into functions such as Jaccard, Cosine, and Dice. To our
best knowledge, there are few studies in the literature that
address large-scale similarity selections by considering both
token weights and their record-specific preferences.

2 PROBLEM FORMULATION

In this section, we formally define the problem of weighted
similarity selection on vector spaces.

2.1 p-Norm Similarity

For a real number p ≥ 1, the “p-norm” of an m-dimensional
vector R = 〈r1, . . . rm〉 is defined as:

lp(R) = p

√∑
i∈[1,m]

rpi .

Definition 1. (p-Norm Similarity) The p-norm similarity
of two non-zero vectors R = 〈r1, . . . rm〉,Q = 〈q1, . . . qm〉 is

Wp(R,Q) =

p

√(∑
i∈[1,m] r

p
2
i × q

p
2
i

)2

p

√∑
i∈[1,m] r

p
i × p

√∑
i∈[1,m] q

p
i

. (1)

Definition 2. (p-Norm Similarity Selection) Given a col-
lection of records S, a p-norm selection includes a record Q
and a threshold τ . It is to find all the records R ∈ S such that

Wp(R,Q) ≥ τ. (2)

A common use case of p-norm similarity is document search,
where a document (record) is modeled as a bag of words. We
consider the corresponding similarity defined as follows.

Definition 3. (Bag-based p-Norm Similarity) Let R and
Q be two bags of tokens. Their bag-based p-norm similarity is

Wp(R,Q) =

(∑
t∈R∩Q (f(t, R)w(t))

p
2 (f(t, Q)w(t))

p
2

) 2
p

( ∑
t∈R

(f(t, R)w(t))p
∑
t∈Q

(f(t, Q)w(t))p

) 1
p

. (3)

In the formula, w(t) is the weight (a non-negative real
number) of a token t. Equation 1 becomes Equation 3 when
the elements in a vector have a one-to-one mapping to the
tokens in the domain S. In this case, each element ri ∈ R
is denoted by a global weight w(t) times a record-specific
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degree f(t, R) if token ti is included by R. For simplicity, we
call c(t, R) = f(t, R)w(t) as the factor of a token t in a record
R. While we focus on 2-norm similarity (defined below), the
results can be applied to general p-norm similarity, especially
when the dimension of vector space is extremely large.

W2(R,Q) =

∑
t∈R∩Q

f(t, R)w(t)f(t, Q)w(t)

√∑
t∈R

(f(t, R)w(t))2
√∑

t∈Q

(f(t, Q)w(t))2
. (4)

For simplicity, we define the length of a record R as

len(R) =

√∑
t∈R

c2(t, R).

Then Equation 4 becomes

W2(R,Q) =

∑
t∈R∩Q c(t, R)c(t, Q)

len(R)len(Q)
. (5)

This similarity function generalizes the commonly used tf-idf
cosine function [10]. In this model, the degree tf(t, R) is the
number of occurrences of a token t in a record R, and the
speciality idf(t) is generally defined as the logarithmically
scaled inverse fraction of the records that contain the token
t. In this paper, we illustrate how to efficiently perform
similarity selection using Equation 2 (when p = 2) and
Equation 4, and the results can be extended to the general
case of other p values. One can integrate any token weights
and degrees into the framework. (See Appendix B.3.)

2.2 An Example

Next we use an example to illustrate these concepts. Table 1
shows a set of tokens with associated weights.

Table 1: Some tokens with their weights (as “w” fields).

token w token w token w token w token w

know 10 strong 8 many 6 look 7 new 6
christs 11 world 6 come 6 good 6 old 8
incident 10 jordan 7 regard 10 will 4 us 5
nba 10 believe 7 larger 10 end 7 days 8
treating 12 people 5 really 6 still 7 want 6

Table 2 shows a collection of records and a query record
Q, each consisting of a bag of case-insensitive tokens, with a
length and the similarity to the query record Q (see Equa-
tion 4). For instance:

len(Q) =

√∑
t∈Q

(tf(t, Q)w(t))2 = 28.1,

len(R8) =

√∑
t∈R8

(tf(t, Q)w(t))2 = 26.1.

In addition,

l2(R8, Q) =
∑

t∈Q∩R8

tf(t, R8)tf(t, Q)w2(t) = 520,

and their similarity is 520/(28.1× 26.1) � 0.7. Therefore, if
the similarity threshold τ is 0.7, then R8 should be an answer.
We can show that R3 is an answer as well.

Table 2: Sample records S, a similarity query record Q,
and records’ lengths and similarities with respect to Q.

id Record Len Sim

R1 many christs believe world will come end 18.5 0.5

R2 larger us christs still believe christs 26.6 0.6

R3 children want good christs 13.9 0.7

R4 new people know incident treating old people 23.3 0.5

R5 people regard jordan nba really good 18.6 0.1

R6 believe strong us good days new world 17.6 0.1

R7 good look jordan nba treating people regard 22.4 0.3

R8 old christs really good christs days 26.1 0.7

Q :christs people treating incident good christs 28.1

2.3 Comparison with Existing Functions

The p-norm similarity function is a generalized form of the
cosine function by allowing a token to have a record-specific
weight in each record. The cosine function can be viewed as
a special p-norm similarity function where f(t, R)’s are the
same for all tokens t in all records R, and the tokens carry
the same weight w(t) = 1. The generalization is especially
important for a large collection of long records, since in such
a case both the global weight and the frequency of a token
in a record are valuable in the similarity function.
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Figure 1: Effectiveness comparison of different functions.

We conducted an experiment to evaluate the effectiveness
of a few common similarity functions. One challenge in such
an experiment is that the same similarity threshold has differ-
ent semantic meanings for different functions. To overcome
this problem, we conducted the experiment as follows. Given
the ground truth about similar pairs of records, for each
function f , for each threshold τ , we did a similarity search
using f and τ , and computed the precision and recall of
this search. Figure 1a shows the results on a data set called
“AskUbuntu” for Jaccard, Cosine, idf 2-norm (where all token
degrees are the constant 1), and tf-idf 2-norm. Given a recall,
the higher the precision of a function, the better the function
is. The figure shows that the tf-idf 2-norm function gave the
best accuracy results. More details of the experiments are
in Appendix B. Notice that the purpose of this experiment
was not to show that the p-norm function is the best for
all applications. Instead, it was to show that it is a better
similarity in certain applications.

In this paper we focus on queries when a threshold is given,
as in previous studies in the literature. A good threshold
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largely depends on the application domain and query-specific
requirements, and how to decide this threshold itself needs a
separate study. Our techniques can be used to help answer
nearest neighbor queries, which can be supported by running
selection queries with a gradually decreasing threshold.

3 BASIC SEARCH METHODS

In this section we first present a naive search algorithm based
on inverted index, then develop an improved algorithm by
doing effective pruning of candidates.

3.1 Naive Algorithm

The following lemma is based on Equation 5.

Lemma 1. Let S be a collection of records. A record R ∈ S

satisfies Wp(R,Q) ≥ τ if and only if we have∑
t∈R∩Q

c(t, R)c(t, Q) ≥ τ len(R)len(Q). (6)

Clearly an answer record should share at least one token
with the query record Q. Thus we can develop a naive algo-
rithm as follows. We first build an inverted index, where the
record list of each token contains the ids of all the records
including this token. Given a query record Q, we scan the
tokens in Q and compute the union C of their inverted lists,
which is a candidate set of answers. We verify each record in
C using Equation 6, and return those that satisfy the equa-
tion as answers to the query. Next we use new concepts to
illustrate how to improve the performance of the algorithm.

Definition 4. (Processed versus Remaining Tokens) For
a total order O of tokens, we sort the tokens in a record R
following O. The processed tokens of R w.r.t. a position i
are the list of tokens in R with a position no larger than i,
while the remaining tokens of R w.r.t. i are the list of tokens
in R with a position larger than i.

Figure 2 shows an example. Consider a total order O =
{t1, . . . , t10}, using which we scan the tokens in the query
record Q. At token t6, we have processed tokens P(R, t6) =
〈t1, t3, t5, t6〉, and their length len(P(R, t6)) is√

(0.1× 8)2 + (0.1× 5)2 + (0.2× 3)2 + (0.8× 2)2 = 1.95.

The remaining tokens are S(R, t6) = 〈t7, t8, t9, t10〉 with the
length of len(S(R, t6)) = 0.92. Also, we have len(P(Q, t6)) =
1.46 and len(S(Q, t6)) = 2.

In the figure, the factor of each token in a record can be
computed as the product of the degree f(t, R) and the global
weight w(t). If we store the degree f(t, R) in each record
entry in the inverted index, it can be used to compute the
product efficiently during the scan of each list. If we further
store the length len(R) in each record entry, the verification
can be performed more efficiently. In our running example,
given a token t in Fig. 2, suppose the record length len(R)
and the degree f(t, R) are stored in the entry of R on the
inverted list of t. Based on the total order O, we first scan the
record list of the first token t2 in Q. The record R does not
contain this token, and R will not appear in the candidate C.
When we scan the record list of t6, we find R with its degree

Figure 2: Processed and remaining tokens of a record R
and a query record Q based on a total token order.

f(t6, R) = 2 and length len(R) = 2.16, and the summation
of the token-wise factor products before (including) token t6
can be computed as aw(R,Q) = f(t6, R)f(t6, Q)w2(t6). We
next consider t7 and t10 in Q, each of which contributes a
factor to the summation aw(R,Q). After processing all the
tokens of Q, we have the summation aw(R,Q). Also, we have
the length len(R), thus can use Inequality 6 to determine
whether R is an answer.

3.2 Using Bound on Remaining Tokens

We next study how to prune records in the naive algorithm
using a bound on the factor products of remaining tokens. In
particular, if we organize the tokens in each record following
the total order, we can prune records based on the common
tokens processed so far and the length of remaining tokens.
The pruning is based on the following lemmas.

Lemma 2. Given a total order O and a threshold τ , each
token tk shared by an answer record R at its position i and
the query record Q at its position j should satisfy

k∑
l=1

(c(tl, R)c(tl, Q)) + len(S(tk,R))len(S(tk,Q)) ≥ δR,Q, (7)

where c(t, R)c(t, Q) = 0 if t /∈ R ∩Q.

Lemma 3. Given a total order O and a threshold τ , we
scan the tokens in Q following the order O, and accumulate
the factor products of the common tokens shared by R and
Q. The following equality holds when we completely scan all
the tokens in Q:∑|Q|

t∈1
(c(Q[l], R)c(Q[l], Q)) =

∑
t∈R∩Q

c(t, R)c(t, Q).

To utilize these results to do pruning, we need to have the
factor of each token in a record, as well as the remaining
length after each position of a record R. We can achieve the
goal by storing both the factor and the related weights in
the inverted index, as shown in Figure 3. We store the token
weight w(t) (or specialty idf(t) in the tf-idf case) in the token
entry. The number of tokens is generally limited, so such
information can be maintained in memory. Each entry on
an inverted list includes four elements: 〈rid, L, P, f〉, where
rid is a record identifier, L is the total length len(R), P is
the length of tokens of R up to this token R[i] = t, i.e.,
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Figure 3: Inverted index where each entry has a total
length L, processed-token length P , and f of the record.

P = len(P(t,R)). We can derive the length of the remaining
tokens after position i using the following equation:

len(S(t,R)) = p
√

lenp(R)− lenp(P(t,R)). (8)

The value f is the degree of token t in the record R. It guar-
antees that we can compute the factor c(t, R) = f(t, R)w(t)
when we incrementally measure the common tokens between
R and Q.

Algorithm 1 is a baseline algorithm that uses the additional
information to do effective pruning. We use the example given
in Figure 2 to show the benefit of the algorithm. Suppose
the tokens of record R have been maintained in the inverted
index as shown in Figure 3. We use a query record Q to
probe each of its ordered tokens {t2, t4, t6, t7, t10}. Given
a threshold 0.8, when processing token t6, we know that
the current common token produces the pair-wise factor
1.6 × 0.8 = 1.28 while their remaining-token lengths are
0.92 and 2, respectively. Since their total lengths can derive
a lower bound δR,Q = 0.8 × 1.89 × 2.55 = 3.37, we have
1.28 + 0.92 × 2 = 3.12 < δR,Q. Based on Lemma 2, we
remove R from the candidate set without any verification.
This pruning step makes this algorithm more efficient than
the naive algorithm.

Algorithm 1: Baseline: Selection using an inverted index.

Input : I : Inverted index; O: Token order; 〈Q, τ〉 : Query.
Output : A set of similar records O.

1 Scan the inverted lists of the tokens in Q following order O;

2 Build a map C : 〈R, aw(R,Q)〉 for each candidate record in S;

3 Read the inverted list of each token t in Q from I;

4 Do the following steps for each entry 〈rid, L, P, f〉 in a list;

5 if Inequality 6 holds then

6 Add record R to O, and remove R from C if R ∈ C;

7 else if Inequality 7 holds and rid /∈ C then
8 Add 〈R, aw(R,Q) = c(t, R)c(t, Q), L〉 to C;

9 else if Inequality 7 holds and rid ∈ C then

10 Increase aw(R,Q) of R in C by c(t, R)c(t, Q);

11 else

12 Remove R from C and no longer consider R;

13 end

14 Check the candidates in C with aw and L, and output O;

4 BOUNDS ON LENGTH AND PREFIX

Next we develop two advanced pruning techniques to improve
the baseline algorithm. The firs technique is based on length
bounds of the records on an inverted list, and the second one
is based on a bound on the prefix of the query record.

4.1 Pruning Using Record-Length Bounds

We first improve the baseline algorithm by utilizing the fol-
lowing bounds on the lengths of candidate records.

Lemma 4. Given a similarity query with a record Q and a
threshold τ , we have the following lower bound (Lτ,Q) and
upper bound (Uτ,Q) on the length for an answer record R:

len(R) ≥ Lτ,Q = τ len(Q)

⎛
⎝max

t∈Q

⎛
⎝ f(t, Q)

min
S∈S

f(t, S)

⎞
⎠
⎞
⎠

−1

, (9a)

len(R) ≤ Uτ,Q = max
t∈Q

⎛
⎝max

S∈S

f(t, S)

f(t, Q)

⎞
⎠ len(Q)

τ
. (9b)

The proof of the lemma is in Appendix A.3. Since only
the records that have non-zero degrees are maintained on
the inverted list of a token, we have minS∈S(f(t, S)) > 0. In
tf-idf, we can assume minS∈S(f(t, S)) = 1 for ∀t ∈ R ∩ Q
without loss of generality.

As the tokens in Q have different maximal factors in S,
we can derive different lower/upper bounds for these records.
Thus, we give a tighter bound than that in Inequality 9b.

Lemma 5. Given a query record Q and a threshold τ , each
answer record R satisfies the following inequality:

len(R) ≤ Uτ,Q =

∑
t∈Q w2(t)maxS∈S f(t, S)f(t, Q)

τ len(Q)
. (10)

4.1.1 Storing Length Bounds on Inverted Lists. To use these
bounds, we revise the inverted index in Figure 3 by storing
length pointers for each inverted list, and sorting the entries
of each list based on the increasing order of their lengths.
To efficiently locate an entry for a length, we can partition
a list into a sequence of groups, and maintain an array of
length pointers lenptrs (in each token entry) to point to
the length of the first record within each group, as shown
in Figure 4. In addition to the specialty, a maximal degree
and an array of length pointers are stored in each token
entry. We maintain the maximal degree maxS∈S f(t, S) for a
token t to store the maximal degree of all the records on the
inverted list of t. For example, there is an entry r8 on the
inverted list of token s, of which the degree f(s, r8) = 8 is
the maximal value of all the records including s. When we
derive the two bounds in Inequalities 9a and 10, this maximal
degree can be obtained by probing a token entry in Q. Notice
that this structure does not apply in the traditional set-based
similarity selection as all tokens in that setting have the same
degree [29]. In the vector space model, however, the variant
degrees have a significant effect on the length bounds. As
shown in Figure 4, we scan the tokens of Q in the increasing
order of their frequencies. Such an order allows us to process
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Figure 4: Scanning record entries to perform Vertical Filter.

the least frequent tokens first. To efficiently skip irrelevant
records, we sort each inverted list in the increasing order of
their record lengths. One can probe the length pointers in a
token entry to obtain the last group that has its first record
length no larger than the lower bound given in Inequality 9a.
As shown in Figure 4, the record entry could be pointed by
a length pointer. While one can provide a length pointer for
each record entry, this approach may require a lot of space in
the token entry. To solve this problem, we split inverted lists
into multiple groups, each is pointed to by a pointer 〈len, ptr〉.
We take the length of the first record in a group as its len
field, and maintain the location of this entry as ptr. We can
locate the last group that satisfies the lower bound directly.
Following the inverted lists from this group, we can stop by
the first record with its length larger the upper bound. By
storing each list in a sequence of fixed-size blocks, we can
focus on the inverted lists within length bounds.

4.1.2 Algorithm Zig: Using Length Bounds. Algorithm 2
shows algorithm Zig that uses the length bounds to improve
the baseline algorithm. The two bounds are used in lines 7
and 8. To discard the records that have their total lengths
smaller than Lτ,Q, line 7 searches the length pointers of a
token t, which comes from the ordered tokens in the query
record Q (sorted by line 1). Thus the first entry of the group
satisfying Inequality 9a is processed. By iteratively scanning
each record entry bounded by line 8, we accumulate the factor
products of tokens shared by a candidate record and the
query in line 11. For the record in C, line 13 verifies whether
its remaining length and accumulated factor products with
Q satisfy Inequality 7. It checks the lower bound δQ,re.rid

against aw and the remaining lengths as follows. For the
new record (with its factor product initialized by line 9)
and the existing candidate records in C (probed in the hash
map C in line 10), a record re.rid has all its information
〈rid, L, P, f〉 associated in its record entry re. We compute
the remaining length slen(re) (in line 13) using its total
length L and processed-token length P based on Equation 8.
In line 6, we reduce the remaining length of Q by the factor
of t, such that line 13 can use Inequality 7 to either remove a
candidate in line 14 or update C by the latest record in line 16.

Algorithm 2: Zig: Selection using length bounds.

Input : I : Inverted index; O: Token order; 〈Q, τ〉 : Query.
Output : A set of similar records O.

1 Sorting tokens in Q using O; // Selection based on O

2 sq = len(Q); // Initialize remaining-token length of Q

3 C ← ∅ ; // Init the candidates with an empty hash map

4 for t in Q do

5 w ← I[t].w;

6 sq =
√

sq2 − w2 × f2(t, Q); // Remaining-token

length of Q

7 re ← I[t].lenptr by len < Lτ,Q; // Begin from Eq. 9a

8 while re.L ≤ Uτ,Q do // End iteration by Eq. 10

9 aw = w2 × re.f × f(t, Q);

10 if C contains re.rid then // Accumulating

11 aw = C[re.rid].aw + aw

12 end

13 if aw + slen(re)× sq < δQ,re.rid then
14 Remove re.rid from C; // By Eq. 7

15 else
16 C ← 〈re.rid, 〈aw, re〉〉; // Update

17 end

18 re ← next(re);

19 end

20 end

21 O ← Check(C); // Directly check C using Inequality 6

By Lemma 3, as we have maintained the accumulated factor
products of Q and each record in C, we directly check the
candidates in C in line 21. We do not extract the remaining
tokens in each record in C as the summation of their factor
products will not increase after we scan all the tokens in Q.

4.2 Pruning Using Prefix Bounds

Our second pruning technique is based on the observersation
that we can find all answers by only considering a subset
(prefix) of tokens in the query record Q, as shown in the
following lemma.

Lemma 6. Based on a total token order O, a record Q
should share at least one token with any of its answer records
before the following token position

j

∣∣∣∣∣∣
∑

t∈Q(j:]

(
w2(t)f(t, Q)max

S∈S

f(t, S)

)
< ητ,Q , (11)

where ητ,Q = τLτ,Qlen(Q).

Appendix A.5 gives a proof. This lemma shows that we
can compute all the answers by only considering a subset
of the tokens in Q. Based on Equation 11 we introduce the
following defintion.

Definition 5. (Prefix) Given a total token order O, the
prefix of a query record Q for a threshold τ can be defined as
Pτ (Q) = Q[: p] where

p = min
j≤|Q|

⎛
⎝j

∣∣∣∣∣∣
∑

t∈Q(j:]

(
w2(t)f(t, Q)max

S∈S

f(t, S)

)
< ητ,Q

⎞
⎠ .

(12)
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Zag: Pruning Using Prefix. We can integrate the prefix
idea into the Zig algorithm as follows. We modify the vector
Q in line 4 to Pτ (Q). From Definition 5, we can compute the
prefix of the query record independently from records in the
data set. We denote the following improved algorithm as Zag
to highlight its idea of choosing a prefix “horizontally.”

Algorithm 3: Zag: Selection using prefix based on Zig.

Input :RI : Record index; . . .
Output : A set of similar records O.
. . .

4 for t in Pτ (Q) do // Compute and use prefix by Def. 5

. . .

20 for 〈re.rid, 〈aw, re〉〉 ∈ C do // Additional pruning

21 if aw ≥ δQ,re.rid then // Already similar to Q

22 Move re.rid from C to O;

23 else if re.aw + slen(re)× sq < δQ,re.rid then
24 Remove re.rid from C; // By Eq. 7

25 end

26 end

27 end

28 O ←verify(C, RI) by probing RI; // Using Inequality 6

Tradeoff between prefix length and verification cost.
Definition 12 shows a minimal number of tokens in the query
record Q using which we can find all similar answers. Clearly
we can still find all these answers by considering more tokens,
i.e., by considering a “longer prefix.” As we increase the
prefix length, we have to pay a higher cost by accessing more
inverted lists. At the same time, these additional lists can also
help us prune more candidates, thus reduce the verification
cost. In our experiments we will evaluate the tradeoff between
the prefix length and the verification cost.

5 PRUNING WITH ELASTIC BOUNDS

We next study how to improve the performance by iteratively
tightening the bounds to achieve better pruning power.

5.1 Tightening Length Bounds Iteratively

In Inequalities 9a and 10, the bounds are computed by the
minimal and maximal degrees of all the records of a token.
One observation is that when we scan the inverted lists along
with the ordered tokens, the degree estimations for both
bounds come from S in its entirety. They can be tightened
by only using records that could be similar to the query,
as illustrated in Figure 5. If we want to scan the ordered
tokens Q = {s, t, u, v, w}, we first use the entire collection
S to estimate maxS∈S f(s, S). When considering t, we find
that its maximal degree within the dashed area is f(t, r3) =
3, which is much smaller than the estimation using S, i.e.,
maxS∈S = 10. The upper bound within the dashed area is
tighter thus can be used to do better pruning. Similarly,
we also have a tighter lower bound within the dashed area
than Inequality 9a. In addition, if we re-check the candidate
set C when considering a new token in Q, some candidates
generated by previous tokens may no longer be similar to Q.

Figure 5: Bounding lengths by elastic maximal degrees.

We can iteratively tighten the bound in Inequality 10 as
follows. We focus on the records that are potentially similar
to Q, say, the similar records not in the output. We call
them “undecided records,” while the records already in the
output are called “decided records.” Instead of estimating the
maximal degree in the entire collection, i.e., maxS∈S f(t, S),
we next show how to tighten the degree bounds based on the
record set B that satisfies the latest length bounds. When we
want to process the (j +1)st token of Q, as the first j tokens
Q[: j] have been processed, the records bounded by B will
be used to estimate the bounds of degree of Q[j + 1].

Lemma 7. Given a query record Q with its tokens sorted
by a total order O, if we have a candidate set C and a bounded
set B after processing its first j tokens Q[: j], any undecided
record that is similar to Q should have the upper bound of

Uτ,Q,j = Ul + Ur, where (13)

Ul =

∑
t�Q[j] w

2(t)f(t,maxS∈C f(t, S))f(t, Q)

τ len(Q)
, (14a)

Ur =

∑
t�Q[j] w

2(t)f(t,maxS∈B f(t, S))f(t, Q)

τ len(Q)
. (14b)

In this lemma, the symbol “t 
 s” denotes that the total
order of token t is no larger than that of s, i.e., O(t) ≤ O(s).
Also, the symbol “t � s” means O(t) > O(s). Appendix A.6
proves this lemma. It says that the undecided candidates
can be rechecked using the tighter upper bound given in
Equation 13, which can provide a better pruning power.
Similarly we can derive a tighter lower bound on the length.

Lemma 8. Suppose we have a candidate set C and a record
set B after we have processed the first j tokens Q[: j], any
undecided record that is similar to Q has the lower bound of

Lτ,Q,j = Ll + Lr, where (15)

Ll = τ len(Q)

(
max
t∈Q

(
f(t, Q)

minS∈C f(t, S)

))−1

, (16a)

Lr = τ len(Q)

(
max
t∈Q

(
f(t, Q)

minS∈B f(t, S)

))−1

. (16b)
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Similar to Lemma 7, this lemma can be used to provide a
tighter bound than Inequality 9a. From the proof of Lemma 7,
we can see that the undecided records that could be similar to
Q determine the maximal degrees of the tokens before Q[j],
and the records within the bounds that are derived from the
latest maximal degrees produce the maximal degrees in the
next step. The following theorem can be used to iteratively
tighten the two bounds.

Theorem 9. If we have a candidate set C and a record set
B after we have processed the first j tokens Q[: j], we have
the following bounds when we scan the remaining tokens.

Lτ,Q = min (minS∈C (len(S)) , Lr) , (17a)

Uτ,Q = max (maxS∈C (len(S)) , Ur) . (17b)

5.1.1 Zig+: Tightening Bounds Iteratively. The following
is an algorithm called Zig+ that uses Theorem 9 to tighten
length bounds iteratively. Based on the inverted index given
in Figure 4, we introduce another vector for maximal degrees
in each token entry for these bounds. It is used for purposes.
1) We want to use the bounds given in Theorem 9 to probe
the token entries; 2) We want the degree mappers to provide
the maximal degree w.r.t. the length bounds.

Algorithm 4: Zig+: Selection with elastic bounds in Zig.

Input : I : Inverted index; O: Token order; 〈Q, τ〉 : Query.
Output : A set of similar records O.
. . .

j = 1

new ub[|Q|] // Init the maximal degrees for the

tokens in Q

4 for t in Q do

. . .

20 for 〈re.rid, 〈aw, re〉〉 ∈ C do // Additional pruning

21 if aw ≥ δQ,re.rid then // Already similar to Q
22 Move re.rid from C to O;

23 else if re.aw + slen(re)× sq < δQ,re.rid then
24 Remove re.rid from C; // By Eq. 7

25 end

26 end

27 while true do

28 Prune C by Eq. 13 with the latest ub;

29 Update Uτ,Q by Eq. 17b with the latest ub;

30 if C or Uτ,Q changed then
31 Update ub; // Update the maximal degrees

32 else

33 break;

34 end

35 end

36 j ← j + 1;

37 end

38 O ← C // Directly output all keys in C

Figure 5 shows the corresponding index structure, where an
array lenmtfs is maintained in each token entry. Its element
is 〈len,mtf〉, which implies that the length len of a record
has a stepping degree mtf on the inverted list. We denote

a stepping degree mtf = f(t, R) as the degree associated
with a record R on an inverted list of token t, in which any
record with a length no larger than R always has its degree
(of t) smaller than that of R, i.e., ∃mtf=f(t,R) : ∀t∈S , len(S) ≤
len(R) ⇒ f(t, S) < f(t, R). Take token v as an example. Its
inverted list contains four records {r9, r4, r5, r7} (we omit the
other entries denoted by ellipsis), which respectively have the
degrees {3, 2, 4, 5}. Thus, v.lenmtfs includes three elements,
namely, 〈l9, 3〉, 〈l5, 4〉, 〈l7, 5〉, where l� gives the length of
this record. Given an upper bound, e.g., l5 ≤ Bu < l7, we
directly obtain the maximal degree of t bounded by B, i.e.,
maxS∈B f(t, S) = 4. In each inverted list, we incrementally
maintain its degree mappers as follows. We scan its entries,
and add an element to the mappers if its degree in a record
is larger than the mtf value of the last element. In the above
example, record r4 does not generate an element as its degree
2 is no larger than that of the last element 〈l9, 3〉.

5.1.2 Analysis on Space Usage. So far, we have introduced
two important structures, namely, the length pointers and
the degree mappers. As discussed in Section 4.1.1, we group
the length pointers, such that each group of record entries
has only one element. For the degree mappers, similarly, we
maintain an element for each stepping degree on an inverted
list. The memory overhead of these structures can be config-
ured by different grouping/stepping size. It is efficient for the
tf-idf weighting scheme, as in this case the degrees (tf) are
small integers even in very long inverted lists. We remove the
length pointer (or degree mapper) that has only one element,
and directly probe their token entries if necessary.

We introduce the above elastic bounds into Algorithm 2
by using two additional phases at the end of each step. In
Algorithm 4, we add lines 20∼37 before line 20 of Algorithm 2
by iteratively applying two phases after each token in Q has
been processed. Before the selection from line 4, we initialize
a cursor j and a vector of maximal degrees for the tokens
in Q. Using the vector ub, we tighten the bounds Uτ,Q

(lines 27∼35). After each inverted list has been scanned,
line 28 first uses Equation 13 to recheck the candidates,
where the checking bound Uτ,Q,j comes from both the current
candidates C (for maxS∈C f(t, S)) and the latest ub (for
maxS∈B f(t, S)). As shown earlier, the maximal degrees of
the tokens in Q can be efficiently obtained by probing the
latest upper bound Uτ,Q against the degree mappers. Also,
line 29 uses Equation 17b to shrink the upper bound based
on the latest ub. The key structure ub will be updated by
line 31 depending on the updated C and Uτ,Q. We maintain
the degrees of all the scanned tokens in each candidate to
update ub by C, and use the degree mappers to update ub
by the latest Uτ,Q. The three components will iterate until
no more changes are observed (as shown in line 33). We use
a pruning phase (lines 20∼26 in Algorithm 4) to shrink C for
better supporting the shrinking phase shown above. Notice
that different from line 16 in Algorithm 2, Zig+ will not add
a new record into C if its total length is larger than Ur (in
Equation 14b). Compared to Zig, the elastic bounds in Zig+
can improve the pruning efficiency.
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5.2 Tightening Prefix Bounds Iteratively

We next propose a technique to iteratively tighten the query
prefix and present two algorithms. Based on the idea that
the maximal degree of a token should be determined by
the records that satisfy the bounds, we develop a method
that exploits the interdependency between the bounds and
maximal degrees to iteratively tighten them. As shown in
Equation 12, the prefix also relies on the maximal degrees
of all the tokens in the query. So we can apply the maximal
degrees to determine a new prefix in each step. As shown in
Appendix A.5, the prefix bound depends on the accumulated
factor products of the query and the maximal degrees. Since
the maximal degrees could gradually decrease, we can obtain
a shorter prefix by utilizing the latest maximal degrees after
we update them in line 31 of Algorithm 4.

Definition 6. (Elastic Prefix) If a query record Q has its
tokens sorted by a total order O, and we have a bounded set
B after processing the jth token in Q[j], the jth elastic prefix
of Q on the threshold τ is defined as Pτ,j(Q) = Q[: p], where

p = min
i≥j

⎛
⎝i

∣∣∣∣∣∣
∑

t∈Q(i:]

(
w2(t)f(t, Q)max

S∈B

f(t, S)

)
< ητ,Q

⎞
⎠ , (18)

and its bound ητ,Q = τLτ,Qlen(Q) depends on Equation 17a.

Slightly different from Definition 5, this new definition
formulates a prefix with elastic bounds. After we have s-
canned the jth token in Q, we can use this definition to
dynamically update the prefix using the latest lower bound
(which is used to compute the bound of the remaining-token
length ητ,Q) and maximal degrees. We continuously adjust
the prefix bound i, and terminate the process when the length
of the remaining tokens Q(i :] is less than the bound ητ,Q.
The condition i ≥ j ensures that the updated prefix always
includes the tokens scanned so far. We claim that as the
upper bound of the length never increases, this elastic prefix
is always no longer than the one determined by Definition 5.
We integrate both of the prefixes into the algorithm Zig+, as
given Algorithms 5 and 6. We highlight their modifications
on Zig+ in the related lines.

Algorithm 5: Zag+: Applying elastic prefix to Zig+.

Input :RI : Record index; . . .
Output : A set of similar records O.
. . .

4 for t in Pτ (Q) do // Compute and use prefix by Def. 5

. . .

37 end

38 O ←verify(C, RI) by probing RI; // Using Inequality 6

Different strategies to use the prefix. We have three
strategies to terminate the scanning process in Zig+. 1) Not
using a prefix: we can perform the iterative filter-and-shrink
process in Zig+ without early termination. When the elastic
bounds become tighter progressively, Zig+ can access short
inverted lists in the remaining tokens due to the effects of
length bounds. 2) Using a prefix pessimistically: we can use

Algorithm 6: ZigZag: Integrating elastic prefix in Zig+.

Input :RI : Record index; . . .
Output : A set of similar records O.
. . .

4 for t in Pτ,j(Q) do // Use elastic prefix

. . .

37 Update Pτ,j(Q); // Compute elastic prefix by Eq. 18

38 end

39 O ←verify(C, RI) by probing RI; // Using Inequality 6

Zag+ to conduct the filter-and-verify framework, in which the
prefix of each query is computed only once (as shown in line 4
of Algorithm 5). It will terminate Zig+ after processing the
tokens in the prefix. 3) Using a prefix optimistically: we can
also employ the elastic prefix given in ZigZag to make use of
the filter-and-verify framework with a shorter prefix. In this
case, as shown in line 37 of Algorithm 6, it can shorten the
prefix after each step. The algorithm will use the latest prefix
in the following steps by line 4. The pessimistic approach of
using a prefix is no worse than the optimistic approach in
terms of the verification cost, but may require a higher cost
to scan the inverted lists.

6 EXPERIMENTS

In this section we present the experimental results of the
proposed techniques. We used three real datasets. The first
one, denoted by Pubmed, included 26 million titles of Pubmed
publication records. The second one, denoted by MT, was
extracted from the social media dataset Memetracker [28],
which included 64 million quotes and phases appearing in
2009. The last one, denoted by Twitter, which comes from
the text field in a large collection of tweets. In each dataset,
we removed the stop words, and treated a record as a bag of
case-insensitive keywords.

Table 3: Datasets.

Dataset Record#Field h(tf) v(tf) AvgT# MaxT#Token#

Pubmed 26m Title 0.024 0.004 7.8 132 3.2m
MT 64m Phrase 0.089 0.033 9.8 40671 3.1m
Twitter 50m Text 0.048 0.006 7.25 132 6.6m

In the table, “AvgT#” means the average token number
in a record, and “MaxT#” means the maximal token number
in a record. The table includes two commonly used statistical
measures of the degree distributions of the datasets. The first
one, denoted by horizontal average variance h(tf), is defined
as

h(tf) =
1

|S|
∑
R∈S

√
1

|R|
∑
t∈R

(tf(t, R)− avg(tf(·, R)))2, (19)

where avg(tf(·, R)) = 1
|R|

∑
t∈R tf(t, R). It averages all records

by the standard deviations of their token degrees. Another
one is

v(tf) =
1

|T|
∑
t∈T

√√√√ 1

|I[t]|
∑

R∈I[t]

(tf(t, R)− avg(tf(t, ·)))2, (20)
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where avg(tf(t, ·)) = 1
|I[t]|

∑
R∈I[t] tf(t, R), named vertical

average variance, averages all the tokens by the standard
deviations of the degrees along with their inverted lists I[t] =
{R ∈ S| t ∈ R}. We use them to measure the effects of the
elastic scheme w.r.t. both of the variances based on the
intuition that larger variance may produce more remarkably
change of the degrees.

We conducted the experiments on three storage platforms
(given in Table 4), respectively using memory, hard disk
(HDD), and flash drive (SSD). To measure the efficiency of
the proposed methods in IO-intensive environments, we use
very small physical memories in the two disk-based platform.
The CPU on the SSD platform was slower than others, and
was relatively slower in the scan-intensive workloads. We
implemented two indexes based on page-oriented B-Tree to
manage records and inverted lists, where the token weights
and record identifiers were maintained in a certain number
of intermediate nodes. In the following table, “II” (and “RI”)
stands for the Inverted Index (and the Record Index), and
“BS” denotes the Block Size in each index.

Table 4: Three storage platforms in the experiments.

Storage CPU Used/Total Mem II BS RI BS

Memory E5-2640 2.6GHz 250GB/320GB 4KB 4KB
HDD E5300 2.6GHz 1GB/2GB 4KB 4KB
SSD T6600 2.2GHz 1GB/2GB 4KB 4KB

The experiments were conducted on a Ubuntu14.04LTS-
4.4SMP linux server. The techniques were implemented in
Java using JDK 1.8. In each experiment, we randomly se-
lected 100 records from a dataset as a query record, and ran
each query six times and measured the average time. Before
each round, we cleared the system caches. For comparison
purposes, we adopted the Flamingo package [8] and made
some changes to support similarity search based on tf-idf,
where tf is the token frequency in a record, and idf(t) is
computed by log2(1 + |S|/|{R ∈ S : t ∈ R}|).

6.1 Efficiency on Different Platforms

We give the results of five algorithms on three storage plat-
forms as shown in Figure 6. The algorithms performed differ-
ently on the data sets due to their different distributions. In
general, the running time was the smallest on Pubmed and
the largest on Twitter, mainly because of their data sizes. The
ZigZag algorithm performed the best among the algorithms
on Twitter on all the three storage platforms. On average it
was 4 times faster than the worst algorithm Zig in all the
datasets using τ ≥ 0.8. Significantly, by introducing elastic
bounds, Zig+, Zag+, and ZigZag reduced at least half of the
running time of Zig and Zag on the MT data set.

Figure 6 shows that the algorithms ran much faster in
memory than HDD and SSD. An interesting result is that
the running time Zig and Zig+ on SSD was not significantly
better than that on HDD. As mentioned above, the CPU in
the SSD platform was slower than that of the HDD platform,
which resulted in longer running time in the scan-intensive

(a) Pubmed in memory (b) MT in memory (c) Twitter in memory

(d) Pubmed on SSD (e) MT on SSD (f) Twitter on SSD

(g) Pubmed on HDD (h) MT on HDD (i) Twitter on HDD

Figure 6: Running time of the proposed algorithms with
different thresholds on three storage platforms.

workloads in Zig and Zig+. In contrast, due to the random
IO’s, the other algorithms ran much faster when SSD be-
came more efficient than HDD. As for ZigZag, as mentioned
in Section 5.2, the shorter prefix generally produced more
candidates due to the fact that many unseen tokens in the
remaining set made it difficult to decide a similar record.
Thus, its running time on HDD was significantly longer than
that of SSD. It is clear that the algorithms that utilized the
elastic bounds, i.e., Zig+, Zag+, and ZigZag, performed 2
times faster than other algorithm on all the storage platforms.

6.2 Effect of Bounds

We conducted experiments to evaluate the effect of different
bounds in different algorithm in terms of the number of IOs
per query. The results are shown in Figure 7. The results from
the datasets showed different IO behaviors of the algorithms,
which depended on the effect of the two elastic bounds.

Length Bounds. The results in Figure 6 showed the per-
formance improvement of Zig+ compared to Zig (by 62%).
Also, Zag+ was always better than Zag (an average improve-
ment of 59%). These benefits came from the elastic length
bounds. However, this improvement was not much on the
Twitter data set. As shown in Equation 20, we have a looser
distribution of degrees for a token with a larger v(tf) value.
In other words, an inverted list with a larger v(tf) value has
record degrees less uniformly distributed. In all the three
datasets, the degrees were roughly proportional to the record
lengths on an inverted list, and more scattered degrees can
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Figure 7: Sequential IO number, random IO number, and
candidate number of two algorithms, with the sub-figures
in each column respectively run on Pubmed, MT, Twitter.

better benefit the proposed elastic length bounds given in
Theorem 9. Also notice the effect of the average length of the
inverted lists, and a longer inverted list can better support
the elastic strategy. The Twitter data set had a large token
vocabulary, and the average size of its inverted lists was rela-
tively small. The small improvement of elastic bounds on this
data set was due to its moderate v(tf) and large vocabulary,
as shown in Table 3.

Query Prefix. Figures 7a∼7c show that ZigZag always
outperformed other algorithms in terms of sequential IOs.
This result was not surprising since the algorithm scanned the
smallest number of inverted lists due to its shortest prefix.
In addition, compared to Zig+ and Zag+, this algorithm
had the same scanning costs on the same tokens. In these
figures, Zigzig was substantially better than Zig+ in terms of
sequential IOs. Based on Equation 19, a record with a larger
h(tf) tends to have a larger variance of the token degrees,
which will result in some tokens associated with larger degrees.
In many real datasets, a token that appears multiple times in
some records tends to have a higher global frequency, and be
associated with a smaller weight. In our experiments, records
had their tokens sorted by a weight-decreasing order. Thus,
the count of the prefix given in Definitions 5 and 6 more likely
decreased if their remaining tokens had larger degrees. In the
Pubmed data set, its h(tf) was much smaller than others. Its
records had larger degrees in their remaining tokens. Thus,
the prefix-based method had a shorter prefix on this data set.
As analyzed above, it could be hard to remove the candidates
with many unseen tokens. In Figures 7g and 7d, in the prefix-
based methods, both the candidates and random IOs on

Pubmed were on average 20 times larger than that of the
other datasets.

Recall that Zag has a candidate-pruning phase in its
lines 20∼26. Therefore, as shown in Figures 7h and 7i, the
size of candidates in Zag was significantly smaller than the
count of the results. This improvement validates the prun-
ing power of this additional phase. We also witness similar
improvements in Zag+ and ZigZag in the figures. It is more
difficult to accept a record in ZigZag as an answer given a
very large threshold, e.g., 0.9, due to the following reasons. (1)
In general, δR,Q with a larger τ may be larger; and (2) The
prefix is shorter for a larger threshold, and the accumulated
factor products of the prefix of a record and Q is generally
smaller. Since ZigZag shortens the prefix greedily, it may
generate the shortest prefix.

6.3 Scalability

We evaluated the scalability of two representative methods,
namely, Zig+ and ZigZag, by increasing the number of records
for the MT data set. As shown above, these two algorithms
respectively had the smallest number of random IO’s (which
is zero in Zig+) and the smallest number of sequential IO’s
(in ZigZag). We sampled 100 records from the data set, and
used them to generate queries. We also increased the number
of records from 1 million to 64 millions. Figure 8 shows
the running time on the two storage platforms. In addition,
Figure 9 shows the selection costs in terms of the number
of sequential IO’s and random IO’s. As shown in Figure 8,
the running time was proximately consistent with Figures 6h
and 6e. The running time increased linearly as we increased
the number of records. The cross point in Figure 7h also
appears in Figure 9c.
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Figure 8: Scalability comparison using external storage.
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Figure 9: IO’s comparison of two algorithms on MT.

6.4 Comparison with Existing Methods

We compared the proposed algorithms with three existing
methods in the literature. The first naive method comes
from the Flamingo package [8], which supports similarity
search queries on large datasets using external storages. We
performed the tf-idf 2-norm selection queries by verifying
the list-union results using Flamingo, where the similarity
function was computed per record. We denote this method
as “Flamingo+tfidf”. We also implemented Algorithm 1 using
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Figure 10: Comparison of flamingo, baseline and Zig+.

the proposed index, in which lines 7∼10 were respective-
ly disabled (denoted by Baseline) or enabled (denoted by
Baseline+pruning) to measure their effectiveness. We allocat-
ed a small amount of memory (less than 100MB) for the
weights and pointers based on the grouping strategy shown
in Section 5.1.2. The associated record weights and degrees
with a size linear to the cardinality of record entries intro-
duced 1X∼2X disk overhead compared to Flamingo. These
weights could help reduce the candidate number, which may
remarkably reduce the memory usage in large-scale datasets.

Figure 10 shows the running time of the baseline imple-
mentations, Zig, and Zig+. It shows that, due to high costs of
verification and the on-demand computation, Flamingo+tfidf
was slower than Baseline by an order of magnitude. In the
figures, the three baseline algorithms, namely Flamingo+tfidf,
Baseline, and Baseline+pruning, required the same running
time for all the thresholds. The running time of Zig slightly
decreased when we increased the threshold, and it was at
most 2X faster than Baseline+pruning (in Figure 10d). In the
figures, Zig+ was always better than Zig, which is consistent
with what we observed in Figure 6. It outperformed Zig by at
least 2X on MT, and was much faster with larger thresholds
(e.g. τ ≥ 0.6.)

Summary: The experimental results showed that the pro-
posed algorithms can efficiently support similarity queries
using p-norm functions. The length and prefix bounds pro-
vided pruning power to remove dissimilar candidates, and
the elastic scheme significantly reduced the running time on
large data sets. ZigZag outperformed other algorithms on the
SSD platform by reducing the scan cost. This algorithm did
not have this advantage for the case of hard disks due to its
larger number of random IO’s and the corresponding higher
cost of candidate verification.

7 CONCLUSIONS

In this paper we studied the problem of supporting similarity
queries on a large number of records using a vector space
model, where each record is a bag of tokens. We considered
similarity functions that incorporate global token weights as
well as record-specific token degrees. We developed a family
of algorithms based on an inverted index, and presented
various pruning techniques to improve their performance. We
conducted an extensive experimental study using real, large
data sets on various storage platforms, including memory,
herd drive, and SSD. The results showed that these algorithms
can support similarity queries efficiently on large data sets.
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A RELATED PROOFS

A.1 Proof of Lemma 1

Proof. In the bag-based similarity on 2-norm, the condition
given in Inequality 2 can be directly applied to Equation 5
and we obtain

W2(R,Q) ≥ τ ⇔
∑

t∈R∩Q c(t, R)c(t, Q)

len(R)len(Q)
≥ τ.
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A.2 Proof of Lemma 2

Proof. Suppose T is the vocabulary that has been sorted by
a total order O on all the tokens in a domain S. If a token tk
is shared by R and S respectively at the positions i and j in
their ordered sets R and Q, the remaining tokens S(tk,R) of
R after position i (or S(tk,Q) of Q after its position j) can be
characterized by a vector of factors 〈c(tk+1, R) . . . c(t|T|, R)〉
with c(t, R) = 0 if t /∈ R (for Q respectively). Thus, the
summation of the factor products should have an upper
bound. Based on the Cauchy-Schwarz inequality, for any two
vectors 〈u1 . . . u|T|〉 and 〈v1 . . . v|T|〉, we have

∑|T|
i=1

uivi ≤
√∑|T|

i=1
u2
i

√∑|T|
i=1

v2i .

Naturally one can decide an upper bound using two vectors
〈c(tk+1, R) . . . c(t|T|, R)〉 and 〈c(tk+1, Q) . . . c(t|T|, Q)〉, i.e.,

|T|∑
l=k+1

c(tl, R)c(tl, Q) ≤
√√√√ |T|∑

l=k+1

c2(tl, R)

√√√√ |T|∑
l=k+1

c2(tl, Q).

As len(S(tk,R)) = len(R(i :]) =
√∑|T|

l=k+1 c
2(tl, R), we have

∑|T|
l=k+1

c(tl, R)c(tl, Q) ≤ len(R(i :])len(Q(j :]). (21)

Also, the summation of the factor products of all their
common tokens before (including) tk can be formulated as

k∑
l=1

c(tl, R)c(tl, Q).

Based on Inequality 6, the summation of the factor products
of all the tokens in R and Q should be no less than δR,Q, i.e.,

k∑
l=1

c(tl, R)c(tl, Q) +

|T|∑
l=k+1

c(tl, R)c(tl, Q) ≥ δR,Q. (22)

From Inequalities 21 and 22, we can prove Lemma 2.

A.3 Proof of Lemma 4

Proof. We next prove Inequalities 9a and 9b, respectively.
1) We first prove the lower bound given in Inequality 9a.
Suppose R is similar to Q on a given threshold τ > 0, i.e.,

W2(R,Q) ≥ τ . Then we have∑
t∈R∩Q

(f(t, R)w(t)) (f(t, Q)w(t)) ≥ τ len(R)len(Q),

or equivalently
∑

t∈R∩Q c(t, R)c(t, Q) ≥ τ len(R)len(Q). Re-

call c(t, Q) = (c(t, R)f(t, Q))/f(t, R), so we have

∑
t∈R∩Q

c(t, R)c(t, Q) =
∑

t∈R∩Q

(
c(t, R)

c(t, R)f(t, Q)

f(t, R)

)
.

We relax f(t, R) ≤ minS∈S(f(t, S)) to obtain

∑
t∈R∩Q

⎛
⎝c(t, R)

c(t, R)f(t, Q)

min
S∈S

(f(t, S))

⎞
⎠ ≥

∑
t∈R∩Q

(
c(t, R)

c(t, R)f(t, Q)

f(t, R)

)
.

Based on Inequality 6, we also know that
∑

t∈R∩Q

(
c(t, R)

c(t, R)f(t, Q)

f(t, R)

)
≥ τ len(R)len(Q).

Thus, the following inequality is true.
∑

t∈R∩Q

(
c(t, R)

c(t, R)f(t, Q)

minS∈S(f(t, S))

)
≥ τ len(R)len(Q).

Relaxing its left-hand side by all the tokens in R ∩Q, we get

max
t∈R∩Q

⎛
⎝ f(t, Q)

min
S∈S

f(t, S)

⎞
⎠∑

t∈R

c2(t, R) ≥
∑

t∈R∩Q

c2(t, R)f(t, Q)

min
S∈S

f(t, S)
.

We get the following inequality due to
∑
t∈R

c2(t, R) = len2(R).

max
t∈R∩Q

⎛
⎝ f(t, Q)

min
S∈S

f(t, S)

⎞
⎠ len2(R) ≥ τ len(R)len(Q).

The lower bound can be derived by relaxing R ∩Q to Q as

max
t∈Q

⎛
⎝ f(t, Q)

min
S∈S

f(t, S)

⎞
⎠ len2(R) ≥ max

t∈R∩Q

⎛
⎝ f(t, Q)

min
S∈S

f(t, S)

⎞
⎠ len2(R).

Combining the above two inequalities, we have

max
t∈Q

⎛
⎝ f(t, Q)

min
S∈S

f(t, S)

⎞
⎠ len2(R) ≥ τ len(R)len(Q).

Thus Inequality 9a is proved.
2) We prove the upper bound Uτ,Q(R) of Inequality 9b.
Let us relax the left-hand side of Inequality 6 by Q, then∑

t∈Q
c(t, R)c(t, Q) ≥ τ len(R)len(Q).

Suppose each t ∈ Q has a maximal degree in all the records
in S, i.e., maxS∈Sf(t, S). Then

∑
t∈Q

⎛
⎝max

S∈S

f(t, S)

f(t, Q)
c(t, Q)c(t, Q)

⎞
⎠ ≥

∑
t∈Q

(
f(t, R)

f(t, Q)
c(t, Q)c(t, Q)

)

holds since maxS∈Sf(t, S) ≥ f(t, R). Its right-hand side can
be translated as follows because of w(t) = c(t, R)/f(Q) =
c(t, Q)/f(Q):

∑
t∈Q

(
f(t, R)

f(t, Q)
c(t, Q)c(t, Q)

)
≥

∑
t∈Q

(c(t, R)c(t, Q)) .

Combining both inequalities, we can derive the inequality
∑

t∈Q

(
maxS∈Sf(t, S)

f(t, Q)
c(t, Q)c(t, Q)

)
≥

∑
t∈Q

(c(t, R)c(t, Q)) .

By further relaxing its left-hand side by all the tokens in
t ∈ Q, we obtain the following inequality:

max
t∈Q

(
maxS∈Sf(t, S)

f(t, Q)

)∑
t∈Q

c(t, Q)c(t, Q) ≥
∑
t∈Q

c(t, R)c(t, Q).

Also, from Inequality 6, we have∑
t∈Q

c(t, R)c(t, Q) ≥
∑

t∈R∩Q

c(t, R)c(t, Q) ≥ τ len(R)len(Q).

Since
∑
t∈Q

c(t, Q)c(t, Q) = len2(Q), we have

max
t∈Q

(
maxS∈Sf(t, S)

f(t, Q)

)
len2(Q) ≥ τ len(R)len(Q).

Inequality 9b is proved. Thus, we have proved Lemma 4.
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A.4 Proof of Lemma 5

Proof. Suppose R is similar to Q with τ > 0, then we have∑
t∈R∩Q

(f(t, R)w(t)) (f(t, Q)w(t)) ≥ τ len(R)len(Q).

We introduce maxS∈S f(t, S) over all the records in S, then∑
t∈R∩Q

w2(t)maxS∈S f(t, R)f(t, Q) ≥ τ len(R)len(Q).

Recall
∑

t∈Q (·) ≥ ∑
t∈R∩Q (·) always holds, so we have∑

t∈Q
w2(t)maxS∈S f(t, R)f(t, Q) ≥ τ len(R)len(Q).

Thus, Inequality 10 is proved.

A.5 Proof of Lemma 6

Proof. We should guarantee it will not result in false negatives
if we discard the one that has no common token shared with
the prefix of a query record. In the vector space model, the
motivation of the absolute prefix is to decide a minimal length
on the assumption that all the tokens from both remaining
sets (of any record R ∈ S and Q) contribute their factors with
a maximum degree. In other words, given each position j in
a query document Q that has its tokens sorted by O, if we
generate an upper bound for its remaining length len(Q(j :]),
we can decide whether we need more contribution from the
tokens before j to satisfy Inequality 6.

As each token t ∈ T has a maximal degree maxR∈S(f(t, R))
in S, the summation of the factor products between Q(j :]
and a record R is bounded by these maximal degrees (of the
tokens in Q(j :]) as∑

t∈Q(j:]

c(t, R)c(t, Q) ≤
∑

t∈Q(j:]

(
w2(t)f(t, Q)max

S∈S

f(t, S)

)
. (23)

Notice that generally we cannot find such a record that has
all of its remaining tokens with the maximal degrees in the
domain. This upper bound dominates the factor products of
the remaining tokens of any record and Q. Suppose there is
no common token between the prefix Q[: j] and R, then the
summation of the factor products is at most the right-hand
side of Inequality 23. Thus, we can safely prune R if

∑
t∈Q(j:]

(
w2(t)f(t, Q)max

S∈S

f(t, S)

)
< δR,Q.

Based on Inequality 9a, all the records that are similar to
Q w.r.t. τ have a lower bound Lτ,Q. If the maximal summa-
tion of factor products that can be derived from Q((j :]) is
less than τLτ,Qlen(Q), it will also be less than δτ,Q due to
τLτ,Qlen(Q) ≤ δτ,Q. Thus, a record can be safely pruned if it
has no common token with Q([: j]), where position j satisfies
the following constraint:

j

∣∣∣∣∣∣
∑

t∈Q(j:]

(
w2(t)f(t, Q)max

S∈S

f(t, S)

)
< τLτ,Qlen(Q) .

Lemma 6 is proved.

A.6 Proof of Lemma 7

Proof. Equation 14 divides the upper bound of all records
into two parts, with one part bounded by token Q[j], and the
other including the remaining tokens after Q[j]. From the
total order definition, Q[j] has a unique global order O(Q[j]),
such that we can always divide a record by comparing their
ordered tokens with Q[j].

From Lemma 2, we know that except for the decided record-
s already in the output, the similar records that include at
least one token in Q[: j] have been included in the candidates
C. Thus, the maximal degrees of these tokens only rely on
the candidates in C, as the other records have been safely
pruned. The summation of the factor products of Q[: j] and
any undecided similar records is no larger than∑

t�Q[j]

w2(t)f(t,max
S∈C

f(t, S))f(t, Q). (24)

As the maximal degrees of the tokens in Q(j :] only rest with
the records that satisfy the bounds B, the contribution of
Q(j :] and any undecided similar record is no larger than∑

t�Q[j]

w2(t)f(t,max
S∈B

f(t, S))f(t, Q). (25)

Combining Equations 24∼25, we obtain the following max-
imal contribution of any undecided similar record and Q:

∑
t∈S∩Q

w2(t)f(t,max
S∈S

f(t, S))f(t, Q) (26a)

≤
∑

t�Q[j]

w2(t)f(t,max
S∈C

f(t, S))f(t, Q) (26b)

+
∑

t�Q[j]

w2(t)f(t,max
S∈B

f(t, S))f(t, Q). (26c)

Considering the similar condition presented in Inequality 6,
we can directly generate the following inequality

W2(S,Q) ≥ τ ⇒
∑

t∈S∩Q

w2(t)f(t,max
S∈S

f(t, S))f(t, Q) ≥ δR,Q,

and the bounding condition on both sides can be derived by

W2(S,Q) ≥ τ ⇒δR,Q = τ len(R)len(Q) (27a)

≤
∑

t�Q[j]

w2(t)f(t,max
S∈C

f(t, S))f(t, Q) (27b)

+
∑

t�Q[j]

w2(t)f(t,max
S∈B

f(t, S))f(t, Q). (27c)

Thus, we have the upper bound given in Equation 14 with its
two parts formulated by Equations 14a and 14b, respectively.

A.7 Proof of Theorem 9

Proof. Let us first prove Equation 17b as follows. At the
beginning, we produce two bounds by Inequalities 9a and 10,
which can determine a set of records if we scan the tokens in
Q(1 :]. When considering token Q[2], there are three cases in
all the records similar to Q. For each R ∈ S ∧W2(R,Q) ≥ τ :

(1) R ∈ C ⇒ len(R) ≤ maxS∈C len(S);
(2) R ∈ O has been claimed as a similar record, which

will never be missed even if its length is beyond the
updated bounds when we scan the upcoming tokens;

(3) Otherwise, we have len(R) ≤ Ur.

Research 9: Similarity Queries & Estimation SIGMOD’18, June 10-15, 2018, Houston, TX, USA

887



As the first two cases are trivial, we focus on case 3. In
Inequalities 9a and 10, we will not miss records by bounding
a record length when we consider Q[1]. In other words, all
the similar records that contain token Q[1] will be included
in C or O, thus the potentially similar records outside C ∪O
do not include Q[1], i.e., for j = 1 we have

W2(R,Q) ≥ τ ∧R /∈ C ∪O ⇒Q[j] /∈ R (28a)

⇔f(Q[j], R) = 0. (28b)

Similar to Inequalities 27a∼27c in Appendix A.6, we have

W2(R,Q) ≥ τ ⇒τ len(R)len(Q) (29a)

≤
∑

t�Q[j]

w2(t)f(t, R)f(t, Q) (29b)

+
∑

t�Q[j]

w2(t)f(t,max
S∈B

f(t, S))f(t, Q). (29c)

From Equation 28b we know Equation 29b is zero. Then we
have len(R) ≤ Uτ,Q,1 = Ur in case 3.

We continue this process by increasing j. In case 3 of each
step, all the previous steps do not miss similar records, then
all the similar records that contain at least one token in
Q[: j] will be included in C or O. Any upcoming record that
is similar to Q must not include any token in Q[: j] unless
it has been included by C or O. Thus, Equation 28b always
holds, and the expression given in Equation 29b is zero. We
can claim len(R) ≤ Ur is always true.

By maximizing the bounds of cases 1 and 3 in each step, we
obtain Equation 17b. Similarly, we can prove Equation 17a.
Thus Theorem 9 is proved.

B USABILITY OF SIMILARITY
FUNCTIONS

This paper focuses on p-norm similarity given in Definition 3
with p = 2. To measure the relative similarity of two records,
we formalize the correlation of two records by the summation
of factor products based on their degrees and token weights,
and generalize the tf-idf cosine similarity [10] with variant
token weights and degrees.

B.1 Accuracy Comparisons

As for the precision comparison given in Section 2, we collect-
ed the data set from https://github.com/taolei87/askubuntu,
which contained a preprocessed collection of questions taken
from the AskUbuntu.com 2014 corpus dump. All its records
had been tokenized and divided to two sets, in which each
record had two fields “Title” and “Question body.” Its train-
ing set had 167,765 records. In the testing set, each record
had been annotated with several similar training records by
domain experts. Based on the ground truth about similar
pairs of these records, we did similarity search using different
functions, and compared them using F1 score, as follows.

F1 =
2× precision× recall

precision+ recall
. (30)

The following table shows the F1 cores of different functions
based on “Title” and the union of both fields (“Full”). It is

clear that the maximal F1 score of 2Ntfidf was comparable
to 2Nidf (with a constant degree) based on the short “Title”
field. When we used longer records (“Full”), the maximal F1
score of 2Ntfidf was better than that of 2Nidf by 5%. Notice
that both of the weighted functions had their maximal F1
scores higher than Jaccard and Cosine.

Table 5: F1 of various functions with different thresholds.

Title Full

τ Jac Cos 2Nidf 2Ntfidf Jac Cos 2Nidf 2Ntfidf

0.1 0.00 0.00 0.01 0.00 0.00 0.00 0.05 0.01
0.2 0.04 0.01 0.03 0.03 0.14 0.00 0.37 0.12
0.3 0.20 0.03 0.12 0.11 0.40 0.07 0.42 0.37
0.4 0.34 0.09 0.28 0.27 0.38 0.39 0.40 0.47
0.5 0.38 0.24 0.40 0.39 0.37 0.39 0.39 0.42
0.6 0.37 0.36 0.42 0.42 0.37 0.37 0.37 0.39
0.7 0.37 0.38 0.40 0.40 0.37 0.37 0.37 0.37
0.8 0.37 0.37 0.38 0.38 0.37 0.37 0.37 0.37
0.9 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37

B.2 Discussions about Application
Domains

As shown above, the token weights and degrees integrated
in tf-idf 2-norm similarity show certain superiority in longer
records. It becomes the Cosine function when we use the
weight w(t) = 1 and use a boolean function for the degree. It
is different from existing set-based functions such as Jaccard,
and has different application domains compared to gram-
based methods (e.g. edit distance).

In the context of massive datasets consisting of many
long records, if users want to search the records that are
semantically similar to a query record, they can integrate
the semantical token weights and record-specific degrees into
the 2-norm similarity, and model the user preference by
placing different degrees in the query record. In this case, the
degrees and token weights could be more valuable for both
the underlying records and the user interests.

B.3 Extensions Beyond tf-idf

Although our experiments used idf-weighting functions to
feed the 2-norm similarity, all our optimization methods do
not depend on such special weights. For use-defined token
weights, one can define a token order and integrate the weights
of processed tokens into the entries on the inverted lists.

In the analysis of inverted index, we suppose that each
degree f(t, R) is an integer to denote the frequency of to-
ken t in a record R. In many applications, users want to
use functional token degrees, e.g., the logistic token frequen-
cy [4]. Thus, the degree mappers that have been given in
Section 5.1.1 need to be revised to accommodate these data
types, such that the functional degrees can also be used in
the proposed strategy. While it is easy to revise the mappers
for these domain-specific applications, the topics regarding
how to update their stepping ranges for best pruning power
needs future work.
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