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ABSTRACT 
Diverse visual analytics requirements of our heterogeneous data 

community have pushed the limit of a single visualization 
capability. We developed a composable system of loosely coupled 
visualization hardware with various software to address some of 
our visual analytics challenges. Visual Analytics Ecology (VAE) 
allows users to perform visual analytics of their data using the most 
suitable visualization tools to accomplish their data analysis goal. 
We described a scenario using different visualization tools in our 
VAE to analyze multiple aspects of simulation data. 
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1 INTRODUCTION 
Test & Evaluation (T&E) is the single largest producer of data in 
the Department of Defense Research, Development, Test & 
Evaluation community and the big data challenges are diverse. The 
Army T&E community tests everything the Soldier touches and 
everything that touches the Soldier, for example, every network, 
application, vehicle, weapon, piece of equipment, communication 
device, data link, etc. and measures everything conceivable to 
assess its effectiveness, suitability, survivability and safety. These 
requirements produce massive, heterogeneous, distributed data sets 
requiring new approaches for analysis and exploitation. A larger 
challenge still is the growing number of requirements for real-time 
or time-critical analysis and how to use high performance 
computing (HPC) resources for them. The Army Test and 
Evaluation Command (ATEC) has made great progress in utilizing 
HPC for test and evaluation applications, but now requires 
concerted HPC focus, especially for machine learning and real-time 
analysis, to integrate the disparate sources of test data, visualize the 
results, and automatically identify anomalies and validate the data. 
These are common requirements throughout the larger Department 
of Defense T&E community [1].  

2 BACKGROUND 
We are creating a capability for interacting with heterogeneous big 
data through a composable and scalable human-computer interface. 
Endert et. al. discussed the importance of supporting the human in 
the visual analytics loop [2]. On the hardware side, one requirement 
is to flexibly perform analytics on devices of large size, such as a 
multiple monitor display wall, Figure 1. Large screen real estate 
offers the means to simultaneously visualize and analyze more data, 
and increases the potential for interactivity in a collaborative 
visualization environment. However, it also increases the 

computational demands and cost. Together with the general trend 
of ever increasing size of datasets means that we require a 
framework that can move data to and from remote HPCs, as well 
as tools for server and special clients, like the display wall. Another 
requirement is to visualize 3D spatial data which are more suited 
for virtual reality (zSpace and Oculus Rift) and augmented reality 
(Microsoft HoloLens) display examples are shown in Figure 1. 
Regardless of the type of display, from handheld to the tiled display 
wall, the goal is not images or animations; the goal is 
communication and interaction, among researchers and between 
researchers and the data. 

 

 
Figure 1: Visualization Ecology with various display systems. 

There are countless ways to create visual analytics tools when 
one considers different software platforms, APIs, and hardware 
combinations. The appropriate combination of tools depends on the 
specific use case. In terms of software libraries and frameworks, 
the open source community constitutes a rich ecosystem of tools, 
many of which are the gold standard. Balancing the need for 
creating specific applications vs. making an extensible and general 
purpose tool produces challenging design decisions. We adopt the 
analogy of a biological ecosystem – a community of living 
organisms in conjunction with nonliving components that interact 
as a system – as inspiration for what we term a visual analytics 
ecology (VAE) as shown in Figure 2. The primary goal is to provide 
a user centric, data centric, and visualization algorithm and 
hardware agnostic visual analytics capability. 

 

 
Figure 2: Visual Analytics Ecology. 
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3 VISUAL ANALYTICS ECOLOGY 
One of the issues to be resolved is the need to uncover complex 
relationships among the large numbers of high-dimensional 
variables, for example, instrumentation data from the system under 
test, video data, meteorological data from the test environment, 
observer log data, test article maintenance data, etc. Traditional 
data exploration using column or structured data formats can be 
limiting in power, i.e., with spreadsheets and SQL databases, or 
complex and accessible only to trained data scientists and 
statisticians, i.e., data frames in R / Python. Our goal is the 
development of visual analytics tools that meaningfully augment 
the discovery of relationships in data for a larger pool of users 
across many domains. We work directly with users, to understand 
both their technical requirements, and also how the capability will 
be used, by whom, and under what conditions, employing a systems 
engineering requirements analysis method. This is showcased in 
our relationship with the US Army Aberdeen Test Center (ATC). 

3.1 Data Management 
With the monotonic growth of data, in fact exponential growth, and 
the requirement to utilize legacy test data to resolve issues in 
deployed systems, the ATC has taken steps to improve the test data 
flow, depicted in Figure 3. There is a total of four ‘tent poles’ that 
need to be addressed to increase the performance of the data flow: 
storage, transfer, reduction and analysis. Previous efforts have 
identified and addressed these ‘tent poles’ in an isolated manner. 
For instance, in the early 2000s, ATC consolidated multiple data 
stores into a single HPC SQL database. Later, when the time to 
reduce terabyte-size datasets was the long pole in the data flow, 
ATC and ARL refactored and rewrote the data reduction software 
and implemented it on a dedicated HPC, decreasing data reduction 
time from 60 hours per terabyte to 5 hours per terabyte, Renard et 
al. [3]. Though the time was reduced by an order of magnitude this 
setup incurred the additional cost of having to transfer data to the 
HPC and then into the HPC SQL database. As data sizes increase 
the data transfer, analytics and visualization become the next long 
poles in the tent. ATC and ARL now look at the problem in a 
holistic way. The new approach, depicted in the Data Management 
bubble in Figure 2, implements a Hadoop-based ecosystem which 
addresses all four of the ‘tent poles’ at the same time. 

 
Figure 3: Test Data Workflow. 

The proposed Hadoop ecosystem consists of tightly integrated 
projects from the Apache Software Foundation. A major 
motivation for this path is the huge support of the open-sourced 
community that has greatly contributed to these projects, the 
foundation and its collection of around 350 other projects [17]. 
Having such a large supporting group lowers the amount of 
framework based maintenance required. The projects selected for 
the Data Management ecosystem can be separated into 3 groups: 
ingestion, storage and manipulation. Ingestion is made up of 
NiFi[18], Kafka[19] and Flume[20]. Each of these projects allows 
data to be efficiently pulled from or pushed into the storage or 
manipulation group. The storage group is built upon the Hadoop 
Distributed File System (HDFS) [21] and includes Hive [22], 
HBase [23] and Phoenix [24]. Hive is geared towards analytics on 

historic data, like finding long term trends, and it provides a SQL 
style interface. HBase is used for near real-time analytics. Phoenix 
resides on top of HBase to give analysts a familiar SQL style 
interface. Both storage paradigms include a JDBC interface 
allowing external applications to have direct access to the storage. 
The manipulation group is made up of Hadoop MapReduce, Spark 
[25] and TensorFlow [26]. 

The manipulation group interacts with each of the other groups. 
For example, Hive calls Hadoop MapReduce for its queries. 
Analysts can interface with Spark via SQL; they can also design 
more complex and efficient queries using Python or Scala through 
Spark than they could with SQL. Analysts write the queries in a 
web-based notebook called Zeppelin [27], another Apache 
Software Foundation project designed for interactive queries and 
which ties together the analytical and visualization components. 

The Hadoop ecosystem enables benefits not seen with previously 
used data solutions. All data types – text, network, weather, 
geospatial, observational, instrumentational, audio, and video – are 
stored within the same system, allowing automated rather than 
manual correlation among the data sets using the same tools. For 
example, when an anomaly is observed in vehicle instrumentation 
data, human intervention is currently required.  Analysts must 
examine the maintenance records to determine if a maintenance 
event caused the anomaly and scan video files to determine if an 
observable event caused the anomaly.  After analysts rule out the 
aforementioned causes, then they can focus on what went wrong on 
the vehicle. Automating this process helps eliminate human 
intervention as a source of delay and error, and it helps elucidate 
hidden anomalies identified by machine learning algorithms. 

Currently, the data management ecosystem runs on a few small 
test systems, including a dynamic approach using Lawrence 
Livermore National Laboratory’s Magpie[28]. Magpie is a 
collection of scripts that enable running Hadoop within HPC batch 
environments. This allows us to scale the number of nodes 
depending on is the size of the dataset; however, due to overhead 
and architecture differences, running Hadoop on HPC batch 
systems is slower and not persistently online for queries. 
Regardless, having the ability to run on HPC makes the connection 
to ParaViewWeb and other visualization software easier, as shown 
in Figure 2.  

3.2 Secondary Data Management 
Cloudberry [5] can be described as middleware between a data 
management system and the visualization side of the ecology, as 
illustrated in the Secondary Data Management bubble in Figure 2. 
The middleware allows building fast, real-time analytics tools that 
support interactive visualization with large datasets. It does so by 
requesting data from the client application more intelligently. 
Specifically, it completes query requests faster by caching results 
of previous queries and storing aggregate results, providing 
potential data reuse to accelerate future related queries and by more 
quickly ingesting data into the data store on the back end for 
progressive updates to the data. From the front-end application, 
interfacing with Cloudberry is simple. One passes a query to the 
Cloudberry layer in a JavaScript Object Notation (JSON) format as 
a message via a web socket. The application listens for messages 
and responds. There is no more complexity on the client side 
compared to sending a query directly to a database, as the 
Cloudberry middleware resolves query optimization.  

3.3 Visualization Hardware 
The visualization hardware bubble in Figure 2 includes several 
distributed collaborative visualization systems. It ranges from the 
large high-resolution tiled display as shown in Figure 1, to multi-
touch displays, to personal workstations, to tablets, to head 
mounted complete immersive virtual reality systems (Oculus Rift 



and HTC Vive – Figure 5), to semi-immersive virtual reality system 
(zSpace – Figure 4), to augmented reality display system 
(Microsoft HoloLens – Figure 7), to the users themselves. 

3.4 Visualization Software 
The visualization software bubble in Figure 2 shows scientific and 
none scientific visualization software available in our ecologyA 
hybrid visualization system [6] capable of combining the benefits 
of both immersive and non-immersive visualization for a seamless 
2D and 3D environment supporting information-rich analysis 
would overcome some of the challenges. Figure 4 shows ParaView 
running on zSpace.  

 

 
Figure 4: ParaView Running on zSpace. 

 
Figure 5: ParaView Running on HTC Vive. 

VisIt [7] scientific visualization software supports client/server 
mode to take advantage of the HPC system for large scale datasets. 
ParaView [8] and EnSight [9] software are configured for high 
resolution on the tiled display and in full VR mode with HTC Vive, 
Oculus Rift, and zSpace. Figure 5 shows ParaView running on 
HTC Vive; fully immersive and 3D interactive data visualization. 
In addition, ParaSAGE [10] extends ParaView to a native SAGE2 
[11] application, taking advantage of SAGE2 scalable, high 
resolution capability. Figure 6 shows ParaSAGE running on the 
high resolution display wall with keyboard and mouse interaction. 
 

 
Figure 6: ParaSAGE Running on High Resolution Display Wall. 

Unity [12] and Unreal Engine [13] also support virtual reality 
and augmented reality data visualization application development. 
Figure 7 shows our augmented reality data visualization application 
developed using Unity running on Microsoft HoloLens [14]. 
Presenting the internal combustion engine fuel injection data using 
different 2D and 3D visualization systems provided the domain 
scientist with new insight into their computational fluid dynamics 
model. 

 

 
Figure 7: Augmented Reality Data Visualization with MS HoloLens. 

 
Figure 8: Information Visualization Using ParaViewWeb Running 

on SAGE2 Framework. 

We further developed our collaborative high resolution data 
visualization framework [15] on top of the ParaViewWeb 
framework [16] supporting both scientific and none scientific data 
within a single framework. Figure 8 shows our SyncVis data 
visualization application running on a high resolution tiled display 
within the SAGE2 framework. SyncVis allows the user to display 
multiple variables using multiple diagrams with one streamlined 
view. The ParaViewWeb framework allows synchronizing data 
displayed using different visualization views; selecting a variable 
in one view highlights the variable in all the views where the same 
variable appears. 

4 DISCUSSION AND CASE STUDY 
We are applying this software with Army test data for automotive 
systems, communications systems, and logistics data. Automotive 
and communications system tests produce 10s of terabytes of data 
for a single system. ParaViewWeb allows building an automated 
workflow, from data ingestion to visualization and interrogation of 
the data. Our VAE is still a work in progress with the eventual goal 
to build a work flow for customer applications and handoff the tool 
to the customer while we continue development of improved 
capabilities and expand the tools to encompass additional customer 
requirements. Having ATC as part of the requirements and 
development team provides a natural two-way communication for 
ARL to understand user requirements, for the customer to 
understand the visualization capability, and to naturally transition 
the capability to the customer already trained in its use. The 



ongoing relationship facilitates sustaining the capability – with bug 
fixes, updates, new features, and port to new platforms. 

In a typical use case, the user uploads simulation and sensor data 
and creates visualizations using the chosen visualization technique. 
Once created, the user has the option to run the visualization on the 
most suitable display. For example, during a test, ATEC collects 
sensor data in the field. ATEC also employs physics-based 
simulation to correlate with the measurements. In one example, 
communication system test data is incorporated in a large 
spreadsheet. The data include radio ID, lat and long coordinates, if 
the radio was transmitting, the start and stop times of transmission, 
if the radio was receiving, start and stop times of message, 
waveform used, and other data. Spreadsheets are limited in the 
amount of data per tab, restricting analysis to small windows of 
time and number of interacting systems. We ingested the test data 
into ParaViewWeb and were able to quickly isolate outlier 
anomalies, visualize the data, and provide analysts access to 
datasets not restricted to small numbers of systems or periods of 
time. SyncVis data visualization, shown in Figure 8, is used to 
analyze large amounts of sensor data. 

 

 
Figure 9: EnSight Running on High Resolution Display Wall 

showing data from an internal combustion simulation 

For 3D temporal and spatial data generated by simulations, the 
user employs a fully-immersive approach to analyze the data, after 
which the user can use the virtual reality display for additional 
immersion in the simulation data. Figure 9 shows a user employing 
the high resolution display wall to discover overall structure of a 
large internal combustion simulation. The figure captures a single 
snapshot of a simulation that consists of 80 million grid nodes 
distributed over 5,000 processors and run for 340 wall-clock hours 
for thousands of time steps; it generated terabytes of data. The 
image illustrates the ability to interact with the combustion 
chamber flow and fuel spray in the presence of valve and piston 
dynamic motion and chemical reactions. The cyclic process is 
animated on the display wall and the user controls the progress and 
resolution, revealing the complex interacting physical processes in 
this high resolution multi-physics simulation.  

The VAE is the realization of an interactive ecosystem of 
devices, humans, software and data that provides a framework for 
which a renewed study of the meaning of interaction and 
computation is achieved that redefines visual analytics. The 
applicability of such a system provides new understanding for data 
science. 

5 CONCLUSION 
We do not believe one size fits all in visualization. Our VAE gives 
the user the flexibility to display the data using the software and 
hardware best suited for the specific analysis and exploration task. 
Depending on the computational requirements, the user can tap into 
HPC resources to shorten the processing time required. As 
interactive visualization requires near real time processing of the 
data, we further improve the overall performance of the ecology 
using middleware like Cloudberry. Moving forward, we plan to 
streamline the process by making available additional visualization 

techniques, by automating the data ingest step, by expanding the 
use on additional visualization devices, and by building automated 
work flows for our customer applications. 
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