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Abstract—The proliferation of GPS-enabled mobile devices
has generated geo-tagged data at an unprecedented rate over the
past decade. Data-processing systems that aim to ingest, store,
index, and analyze Big Data must deal with such geo-tagged
data efficiently. In this paper, among representative, disk-resident
spatial indexing methods that have been adopted by major SQL
and NoSQL systems, we implement five variants of these methods
in the form of Log-Structured Merge-tree-based (LSM) spatial
indexes in order to evaluate their pros and cons for dynamic
geo-tagged Big Data. We have implemented the alternatives,
including LSM-based B-tree, R-tree, and inverted index variants,
in Apache AsterixDB, an open source Big Data management
system. This implementation enabled comparison in terms of real
end-to-end performance, including logging and locking overheads,
in a full-function, query-based system setting. Our evaluation
includes both static and dynamic workloads, ranging from a “load
once, query many” case to a case where continuous concurrent
incremental inserts are mixed with concurrent queries. Based on
the results, we discuss the pros and cons of the five index variants.

I. INTRODUCTION
During the past decade, diverse geo-tagged data such as

texts, photos, and videos have been generated at an unprece-
dented rate from GPS-enabled devices. The trend will be
further accelerated by the advent of the Internet-of-Things era,
where literally everything could involve GPS-enabled sensors
and generate geo-tagged data. In addition, popular NoSQL
systems such as [1], [2], [3], [4] have adopted Log-Structured
Merge (LSM) Trees [5] as their storage structure in order
to support such high-frequency data generation. LSM-trees
amortize the cost of writes by batching updates in memory
before writing them to disk, thus avoiding random writes.

There have been many studies in the spatial data processing
area, from proposing new spatial index data structures to
evaluating and analyzing those proposed indexes [6], [7]. Most
of the studies, however, have dealt with “load once, query
many”, i.e., static workloads. Also, many of the measures
in those studies consider only I/O without including CPU
or index access costs instead of an overall system’s end-to-
end processing cost. Moreover, LSM-based spatial indexing
methods have received little attention. A few recent studies [8],
[9] have investigated LSM-based or insert-optimized spatial
indexing methods with dynamic workloads that reflect contin-
uous incremental inserts and concurrent queries.

Given this context, now is an appropriate time to revisit
spatial indexing methods. The contributions of this work are:

1) Among representative, disk-resident spatial indexing
methods that have been adopted by major SQL and NoSQL

†This study was performed while this author was at UC Irvine.

R-tree-based methods Non-R-tree-based methods
Oracle, IBM Informix Spatial

DataBlade, PostgreSQL (which
also supports GiST), MySQL,

Couchbase

Oracle, IBM DB2, MS SQL
Server, MongoDB, Apache

Lucene

TABLE I: Spatial indexing methods supported by major SQL and
NoSQL systems, where Non-R-tree-based methods use a well-known
scheme which maps two dimensional point objects into one dimen-
sional sequence values and stores/retrieves them into/from a typical
one dimensional index structure, e.g., a B-tree.
systems (see Table I), we implement five variants as Log-
Structured Merge-tree-based (LSM) spatial indexes in Apache
AsterixDB, an open source Big Data management system [9].

2) Among the five variants, three are based on B-trees, one
on R-trees, and one on inverted indexes, which are three of the
most popular disk-resident indexes. With this setup, we can
answer an interesting question: If built-in indexes like B-tree
and inverted indexes are used to implement spatial indexing,
can they be as efficient as or even superior to R-trees?

3) We focus on real-world geo-tagged point data in our
evaluation and cover a broad spectrum of workloads, from a
“load once, query many” case without incremental inserts to
a case with continuous concurrent insertions and queries.

The remainder of the paper is organized as follows. First,
we briefly explain the basic idea of LSM-trees and review
how AsterixDB transforms traditional indexes into LSM-tree
indexes. Next, we summarize the details of the five spatial
indexes, then present our evaluation strategy and results.

II. BACKGROUND
A. LSM-trees

An LSM-tree [5] is an ordered, persistent index structure
that supports typical operations such as insert, delete, and
search. It is optimized for frequent or high-volume updates.
By first batching updates in memory, the LSM-tree amortizes
the cost of an update by converting what would have been
several disk seeks into some portion of a sequential I/O.
Entries being inserted into an LSM-tree are initially placed
into a component of the index that resides in main memory –
an in-memory component. When the space occupancy of the
in-memory component exceeds a specified threshold, entries
are sequentially flushed to disk – a disk component. As the
number of disk components increases, disk components are
periodically merged together subject to a merge policy that
decides when and what to merge.

B. Storage management in Apache AsterixDB
Apache AsterixDB [10], [11] is a parallel, semi-structured

information management platform that provides the ability to



ingest, store, index, query, and analyze mass quantities of
data. Its storage layer includes a framework for converting
a class of indexes (including conventional B-trees, R-trees,
and inverted indexes) with basic operations such as insert,
delete, and bulkload into LSM-based secondary indexes. The
framework serves as a coordinating wrapper that orchestrates
the creation and destruction of LSM components and delegates
operations to the appropriate components as needed. See [9]
for more details of the framework and [12] for details of the
LSM indexes in AsterixDB, such as LSM B-trees, LSM R-
trees, and LSM inverted indexes, with transactional support.

III. FIVE LSM SPATIAL INDEXES
This section describes the five indexes, which are named

the R-tree, DHB-tree, DHVB-tree, SHB-tree, and SIF indexes.
The R-tree is the LSM R-tree index. The DHB-tree, DHVB-
tree, and SHB-tree are each based on an underlying LSM B-
tree index. SIF is based on an LSM inverted index.

A. R-tree
An LSM R-tree consists of an in-memory component and

zero or more disk components. An in-memory component of
an LSM R-tree consists of a traditional R-tree along with
a deleted-key B-tree that captures deleted entries. A disk
component is a variant of an R-tree, where it orders indexed
entries using a Hilbert curve when loading the tree. The
deleted-key B-tree is useful when merge-based reconciliation
(a process to find non-deleted entries throughout all in-memory
and disk components) is not available; in contrast, merge-based
reconciliation is available for LSM B-trees since they maintain
entries in a totally ordered manner [9].

An insert operation inserts an entry e = 〈sk, pk〉 into the in-
memory component via traditional R-tree insertion logic, with
sk and pk representing a secondary key and its corresponding
primary key, respectively. A delete operation deletes an entry e
= 〈sk, pk〉 from an in-memory R-tree if e exists. It also inserts
e into the associated deleted-key B-tree; this step serves as a
sentinel by preventing entries of e in an older component’s R-
tree from being returned. A flush operation creates a new disk
component as follows: Entries in the in-memory component
are sorted using a Hilbert curve, as are entries in the associated
deleted-key B-tree. During both sorts, the entries are compared
relatively based on the Hilbert curve. (Relative comparisons
are explained in Section III-B.) A new disk component is then
created by merging and bulk-loading the two sets of sorted
entries. During this process, an entry e from the deleted-key B-
tree becomes an anti-matter entry e′ in the new disk component
if an identical entry e does not appear in the sorted R-tree
entry list. Otherwise, e from the deleted-key B-tree is ignored.
A search operation creates a range-scan cursor consisting of
a heap of sub-cursors on the disk components and gets their
reconciled entries; those entries must be checked against the in-
memory component’s deleted-key B-tree, and surviving entries
from the check are returned by the range cursor at the end.
A merge operation gets reconciled entries like the search
operation, but without checking the in-memory component’s
deleted-key B-tree since a merge operation only merges disk
components. [12] offers further details.

B. DHB-tree and DHVB-tree
Details of indexing and querying 2D spatial point objects

using a B-tree with space-filling curves (such as Hilbert and Z
curves) are described in previous studies [13], [14], [15], [16].

We use the Hilbert curve since it is considered to be superior
to other space-filling curves [14]. The DHB-tree and DHVB-
tree were implemented using the main ideas from [16], which
details how to index 2D spatial points using a B-tree with
space-filling curves and how to support spatial range queries.

In general, both our DHB-tree and DHVB-tree indexes
store point objects and support range queries. However, there
is a key difference in terms of how they compare points.
One approach is to compute Hilbert sequence numbers for
two given points and then compare the resulting numbers.
An alternative is to compare the points relatively, i.e., without
computing full sequence numbers. Relative comparisons can
be faster than the absolute sequence number comparisons if the
two points lie far away from each other. The DHB-tree uses
the relative-comparison method, so stored entries in DHB-tree
index have coordinates and primary key fields but no stored
sequence number. Note that this means that whenever a com-
parison is needed, the relative comparison steps are repeated.
The DHVB-tree adopts the absolute-comparison method, so
its index entries have the coordinates, primary key fields, and
also a Hilbert sequence number. The tradeoffs between these
two methods will be examined in the experiments.
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Fig. 1: A 3-level 2×2 grid hierarchy and cell numbers at each level

C. SHB-tree
In the SHB-tree indexing method, a two-dimensional space

is statically decomposed into a k-level 2n×2n grid hierarchy,
where k and n are numbers chosen when the index is created.
The top level (level 0) has 2n×2n cells, and each successive
level further decomposes a cell at the previous level into
2n×2n cells. Also, the top-level cells are numbered in a linear
fashion by using a Hilbert curve, and so are the sub-cells
belonging to a parent cell at the previous level (by prepending
the ascendant cell numbers). Figure 1 depicts a 3-level 2×2
grid hierarchy and its cell numbers at each level. Since the
top level has four cells and each cell has four sub-cells, the
sequence numbers are from the first-order Hilbert curve.

To store a spatial object in the SHB-tree, the MBR of
the object is decomposed into a set of cells, each of which
either overlaps with the MBR or is completely covered by
the MBR according to the following covering rule. If the
MBR completely covers some cell at a level, that cell is said
to be covered by the MBR. A covered cell is included in the
result set and not decomposed at lower levels. The rest of
the overlapping cells, if any, are decomposed further at the
next level. This rule applies at all levels of the grid hierarchy
except that overlapping cells at the lowest level are included in
the result set without further decomposition. Note that a point
object will always be mapped into a cell at the lowest level.
Once the set of cells are computed for an object being inserted,
each cell number (as a key) is inserted into the underlying B-
tree, where a cell number also includes the level number of
the cell at the end. Each SHB-tree index entry thus consists of
a 〈cell number, primary key〉 pair.



When a query region is given, a set of cell numbers for
the MBR of the query region are computed and used to search
for matching cell numbers of indexed objects. Searching for
the set of MBR cell numbers over the index can be optimized,
when there are consecutive cell numbers, by forming a range
search with the consecutive numbers. This optimization can
effectively reduce the number of index searches. False positives
caused by (1) the MBR of the query region, (2) the MBR
of the stored spatial objects, and/or (3) the overlapping, non-
covered cells at the lowest level are all discarded during the
post-processing step. Cause (1) is not relevant to a rectangular
region query, and cause (2) is not relevant to point objects.
In general, a finer granularity of cells at the lowest level can
reduce the number of false positives due to cause (3), but it
may also increase the number of index searches resulting from
reading more cells for a given query region’s MBR.

This grid-based approach is particularly interesting since
it is used for spatial indexing in MS SQL Server [17]. The
Linear Quadtree [18] in Oracle Spatial [19] works in a similar
way, except that its number of sub-cells in a cell is fixed (at
four) and its cells are numbered in a quadtree-based manner.

D. SIF
SIF provides a way to support spatial indexing based on

inverted indexing. The main idea is similar to the SHB-tree
except that SIF uses an inverted index. A spatial object is
mapped to a set of cell numbers, which are stored in an
inverted index as a set of tokens. Similarly, a region query
goes through a mapping step to obtain a set of cell numbers
and then searches these cell numbers just like how a set of
keyword tokens are searched for in an inverted index.

In general, an inverted index supports exact match searches
for a given string token, where a set of string tokens can be
generated from a given query string. Some inverted indexes
provide richer search types, such as prefix or range searches,
based on the underlying data structure (such as trie or B-
tree) used to implement the index. We used the LSM inverted
index in AsterixDB as a black box to implement SIF; as a
result, our SIF index only supports exact matches. SIF thus
has more overhead than the SHB-tree due to its lack of range
search support. As described earlier, a range search in the
SHB-tree can reduce the number of searches when contiguous
cell numbers result from a give query region. Nonetheless, a
related optimization is available for SIF to reduce the number
of searches over the underlying LSM inverted index: a set of
child cell numbers can be replaced with their common parent
cell number if these child cells completely cover the parent
cell. This optimization requires a complete spatial object to
be captured at all levels. However, it comes with an increased
index size due to storing a point object at each of the levels
in a grid hierarchy. We will see that the increased index size
can degrade this indexing method’s performance.

IV. EVALUATION PLAN
Our evaluation used an 8-node cluster to host an AsterixDB

instance, with each node running CentOS Linux on a Quadcore
Intel Xeon CPU E3-1230 V2 3.30GHz, 16GB RAM, 1 GBit
Ethernet NIC, and three locally attached 7,200 rpm SATA
drives set up as RAID 0. In each node, a dataset was stored in
four separate partitions to provide more parallelism. In total,
a dataset in the 8-node AsterixDB instance was horizontally
partitioned into 32 partitions based on primary key. In Aster-
ixDB, the secondary indexes of a given dataset are local to the

Index Fields of an index entry (size in bytes)
DHB-tree point (16), pk (8)
DHVB-tree Hilbert sequence number (8), point (16), pk (8)
R-tree point (16), pk (8)
SHB-tree cell number (7), point (16), pk (8)
SIF cell number (7), pk (8), point (16)

TABLE II: Each index entry’s fields with their sizes in bytes

primary index. See [12] for more on our experimental setup.
We implemented the DHVB-tree with 64-bit Hilbert se-

quence numbers and the same resolution was given to the
DHB-tree. We configured both the SHB-tree and SIF index
to have a 6-level 24×24 grid hierarchy. A cell’s size at the
bottom level is around 2 meters × 1 meter (2m×1m), with 2m
for the x-axis and 1m for the y-axis. Table II shows the details
of each index entry’s fields and their sizes at the logical level.
Each index’s entry also includes the original point in order
to support index-only scans when a query includes predicates
that can be evaluated using just the fields in the secondary
index. See [12] for more on how index-only scan queries and
non-index-only scan queries are processed in AsterixDB.
A. Spatial Dataset

We obtained a set of real-world GPS point data from
OpenStreetMap [20], which includes more than 2.7 billion
points. Because the obtained data includes only the points
themselves, represented as a latitude and a longitude, we
generated synthetic tweets using the obtained point data for
this evaluation. We uniformly sampled 1.6 billion points out
of the 2.7 billion points and augmented them with tweet data.
These 1.6 billion tweet records amount to 1.6 TB.

B. Workloads
We used two classes of workloads: one is static and the

other is dynamic. The first has no insertions after data is loaded
and it is called the Static workload. In contrast, the dynamic
class involves continuous data arrivals; one variant of this class,
Dynamic workload 1, is ingestion-only, while another variant
has concurrent queries as well and is called Dynamic workload
2. For the queries, we examine both select and join queries,
both of which use a secondary spatial index as their access
path. These queries fall into two categories; one is an index-
only-scan query that only accesses a secondary spatial index,
and the other is a non-index-only-scan query that searches a
secondary spatial index first and then accesses the primary
index due to a predicate not covered by the secondary index.
See [12] for further workload details.

V. EXPERIMENTAL RESULTS
Due to space limitations, we present only a subset of our

full results here. See [12] for additional results.

A. Static workload results
Table III shows the primary index (“pidx”) size after

loading 1.6 billion records as well as the elapsed time for data
loading. Also, it shows the elapsed times for creating each
spatial secondary index on the sender location field of the
1.6 billion tweet records and the corresponding index sizes.
The results for the index-only-scan select queries are shown
in Figure 2(a). This figure shows, for each spatial index, its
query response time percentage relative to the query response
time of the LSM R-tree.
B. Dynamic workload 2 results

Dynamic workload 2 tests each index’s ability to ingest and
query concurrently while the data arrival rate varies. Figures
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(c) Dynamic workalod 2: queries per second (QPS)

Fig. 2: Experimental results: for the queries in the workloads, the spatial region size, i.e., the circle radius, was varied from 0.00001 degree
(about 1 meter) to 0.1 degree (about 10km). For the dynamic workload 2, the rate 1, rate 2, rate 3, and rate 4 represent making tweet generators
sleep 1 millisecond after every 1, 10, 100, and 1000 generated record(s), respectively.

pidx dhbtree dhvbtree rtree shbtree sif
Index size (GB) 1001.53 46.24 59.66 47.74 62.64 353.70
Index creation
time (minutes) 85.02 25.74 18.02 17.08 17.14 46.60

TABLE III: Index size and creation time

2(b) and 2(c) show the results of the index-only-scan query
case for this workload. Figure 2(b) shows the inserts per second
(IPS) for each spatial index for each ingestion rate after one
hour of ingestion while concurrent queries are being processed.
Figure 2(c) shows the corresponding queries per second (QPS).

C. Summary of the results
Here we summarize the main lessons from the experiments.

First, without concurrent data arrivals (static workload), for
small-circle range queries, the SHB-tree outperformed the
R-tree in terms of query response time due to the index-
range-scan mechanism enabled by the underlying B-tree. For
larger-circle range queries, however, this effect was washed
out by more false positives and more searches caused by
having more cells. Second, with ingestion but no concurrent
querying (dynamic workload 1), the DHVB-tree and SHB-
tree outperformed the R-tree in terms of IPS [12]. Third, with
concurrent data ingestion and querying (dynamic workload 2),
the DHVB-tree outperformed the R-tree in terms of QPS at
slower data arrival rates; there was no IPS difference among
the indexes except for SIF. For higher incoming data rates, the
DHVB-tree and SHB-tree outperformed the R-tree in terms of
IPS, but the R-tree outperformed them in terms of QPS. In
addition, the DHB-tree’s insert performance was worse than
the DHVB-tree’s due to the overhead of its relative com-
parisons. SIF, whose underlying data structure is an inverted
index, performed the worst overall, due to its lack of range and
prefix search support, both for ingestion performance (IPS) and
query performance (QPS).

Except for SIF, there was neither a clear winner nor a clear
loser considering both insert and query performance. Query
differences were mostly modest in our real end-to-end system
setting. This result was especially true for large-circle non-
index-only-scan queries with many results, where final primary
key lookups were costly. If we had to pick one winner from an
end user’s perspective, we would choose the R-tree index since
it performed well and does not need tuning such as picking a
proper number of grid levels and the number of cells in each
grid; tuning was required for the SHB-tree and SIF to find a
sweet spot to trade off false positives versus more searches.
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