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Abstract—Recent advances in DNA sequencing have enabled
a flood of sequencing-based applications for studying biology and
medicine. A key requirement of these applications is to rapidly
and accurately map DNA subsequences to a reference genome.
This DNA subsequence mapping problem shares core technical
challenges with the similarity query processing problem studied in
the database research literature. To solve this problem, existing
techniques first extract signatures from a query, then retrieve
candidate mapping positions from an index using the extracted
signatures, and finally verify the candidate positions. The effi-
ciency of these techniques depends critically on signatures selected
from queries, while signature selection relies on an indexing
scheme of a reference genome. The q-gram inverted indexing, one
of the most widely used indexing schemes, can discover candidate
positions quickly, but has the limitation that signatures of queries
are restricted to fixed-length q-grams. To address the problem,
we propose a flexible way to generate variable-length signatures
using a fixed-length q-gram index. The proposed technique groups
a few q-grams into a variable-length signature, and generates
candidate positions for the variable-length signature using the
inverted lists of the q-grams. We also propose a novel dynamic
programming algorithm to balance between the filtering power of
signatures and the overhead of generating candidate positions for
the signatures. Through extensive experiments on both simulated
and real genomic data, we show that our technique substantially
improves the performance of read mapping in terms of both
mapping speed and accuracy.

I. INTRODUCTION

Finding similar objects is an important operation used in
a wide range of applications. In this paper, we focus on the
problem of finding positions of DNA subsequences in a large
reference sequence approximately, which is known as the read
mapping problem in genomics. Although the problem has been
actively studied in the field of computational biology, it shares
core technical challenges with similarity query processing
studied in the database research literature.

Informally, given a query that is a DNA subsequence called
a read, the read mapping problem is to find all positions
of subsequences in a reference genome sequence that are
similar to the query. The similarity between two sequences is
measured using their edit distance, and a threshold is given to
specify the number of acceptable errors and genetic variations.
Figure 1 shows an example of a read mapping. In the figure,
the mapping positions of the read AACT are 104, 112, and 116
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Fig. 1. An example of a read mapping

of the reference sequence where the read occurs either exactly
or approximately.

To solve the problem, many techniques have been proposed
under a filtering-and-verification framework, where candidate
positions are generated using one or more filters and then
verified to find true mapping positions. A majority of the effort
has been focused on generating as few candidates as possible
in an early stage of the read mapping because the performance
of verification relies on the number of candidates. To generate
candidate positions, existing techniques first extract signatures
from a query, and then identify positions containing some
signatures of the query as candidate positions. Many tech-
niques make use of q-grams as signatures, where a q-gram of
a sequence s is a subsequence of s of length q. They build a
q-gram inverted index on a reference genome sequence, where
each distinct q-gram in the reference is associated with an
inverted list containing positions where the q-gram appears.
Given an inverted index, a typical approach to generating
candidates is to extract some q-grams from a read, retrieve
inverted lists of the q-grams from the index, and take the union
of positions on the inverted lists considering relative positions
of the q-grams in the read (see Section II for details).

Since signatures of a query determine the filtering power,
selecting an optimal set of signatures is an actively studied
problem in similarity query processing as well as read map-
ping. Given a q-gram inverted index, for example, Hobbes [1]
and Hobbes2 [2] proposed techniques for selecting an opti-
mized combination of q-grams of a read to minimize candidate
mapping positions. Because the length of signatures of a read
is fixed to q, however, some q-grams might generate many can-
didate positions, which leads to inefficient mapping. There are
several similarity query processing techniques that make use
of variable-length signatures. VGRAM [3], [4] extracts some
variable-length grams from data strings and makes an inverted
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index for the extracted grams. VGRAM selects signatures of
a query among those grams extracted for indexing. PASS-
JOIN [5] and HSTree [6] build a separate inverted index for
each distinct length of data strings by partitioning data strings
into equally sized segments. Given a query, they generate
signatures of the query according to the lengths of indexed
segments. As these techniques rely on a predefined set of
signatures, which are chosen regardless of queries, however,
some queries could suffer from poor performance caused by
inappropriate signatures. Hence, we need a dynamic way of
adjusting signature lengths to select good signatures for each
query.

To address the problem, we propose a method to produce
variable-length signatures from a read using a fixed-length q-
gram inverted index. We show that we can generate candidate
positions for a variable-length signature using inverted lists of
a few fixed-length q-grams. We also propose a novel algorithm
to judiciously select optimized signatures for each query. The
following are the main contributions of the paper.

• We have observed that overlapping and consecutive
q-grams can be combined into variable-length signa-
tures. Based on the observation, we generate candidate
positions for a variable-length signature using inverted
lists of fixed-length q-grams.

• We propose a novel dynamic programming algorithm
that judiciously selects variable-length signatures by
balancing between the filtering power of the selected
signatures and the overhead of generating candidates
for the signatures.

• We have developed Hobbes3, a software package for
mapping reads based on the proposed technique and
made it available online.1

• We have conducted a thorough experimental study us-
ing real genomic data and compared Hobbes3 against
state-of-the art read mapping softwares.

The rest of the paper is organized as follows. Section II pro-
vides background on subsequence mappings and related work.
Section III presents the proposed technique for generating and
selecting signatures. Section IV provides our candidate genera-
tion and verification methods. Section V presents experimental
results and Section VI concludes the paper.

II. PRELIMINARIES AND RELATED WORK

A. Read Mapping Problem

A genome is a sequence of characters from the alphabet
Σ = {A, C, G, T, N}. The following two measures are used to
compute the similarity between two genomic sequences.

Hamming distance: given two sequences of s1 and s2 with the
same length (i.e., |s1| = |s2|), the hamming distance between
them is the number of positions i such that s1[i] �= s2[i], where
|s| denotes the length of a sequence s and s[i] denotes the ith

character of s.

Edit distance: given two sequences of s1 and s2 whose lengths
are not necessarily the same, the edit distance between them is

1http://hobbes.ics.uci.edu

the minimum number of edit operations to transform s1 to s2,
where an edit operation is substitution, insertion, or deletion
of a single character.

Example 1: Consider two sequences s1 = AACCGGT and
s2 = ACCGGTA. The hamming distance between them is
4 since characters at position 1, 3, 5, and 6 are different
(assuming positions starting from 0). Their edit distance is 2
because s1 can be transformed to s2 by deleting A at position
0 and inserting A at the end.

Given a set of reads R and a similarity threshold for a
similarity measure, the read mapping problem is to find every
position l of a reference sequence Γ for each read r ∈ R such
that the similarity between r and a subsequence of Γ starting
at l is within the threshold.

Edit distance is an extended measure of hamming distance
since it supports indel (insertion/deletion) errors in addition
to mismatch (or substitution) errors. As DNA sequencing
technologies are progressing toward producing longer reads,
it is important to support indel errors, which are caused by
sequencing errors and genetic variations [2]. Hence, we use
the edit distance to measure similarities between sequences in
this paper. Because Hobbes3 directly inherits the functionality
of read mapping using hamming distance from Hobbes2,
interested readers may refer to [2] for the comparison results
of read mapping using hamming distance. For the ease of
description, we first focus on the read mapping problem with
mismatch errors only. Then we give a separate discussion of
how to support indel errors in Section IV.

B. Candidate Generation Using q-gram Signatures

A positional q-gram of a sequence r is a subsequence of r
of length q with the start position of the subsequence in r. The
q-gram set of r, denoted by G(r, q), is obtained by sliding a
window of length q over r.

Example 2: For a sequence r = GAATGAAT, G(r, 3) is
{(GAA, 0), (AAT, 1), (ATG, 2), (TGA, 3), (GAA, 4), (AAT, 5)}.

As a character in a sequence s is included in at most q
positional q-grams, one substitution on s modifies at most q
positional q-grams of G(s, q). Therefore, if a sequence s is
different from another sequence r by k substitutions, s should
share at least T = |G(s, q)| − k × q common q-grams with
r, where |G(s, q)| denotes the size of G(s, q). By counting
the number of common q-grams between sequences, we can
safely filter out dissimilar sequences without calculating their
real distance. This technique is known as count filtering.

Besides count filtering, there is another technique widely
used to filter out dissimilar sequences. The technique makes
use of non-overlapping q-grams based on the following obser-
vation. Given a sequence r and a hamming distance threshold
k, we select k + 1 non-overlapping q-grams of r. Since
each substitution can modify at most one of the k + 1
non-overlapping q-grams, the pigeonhole principle guarantees
that it is impossible to distribute k substitutions into k + 1
non-overlapping q-grams without leaving at least one q-gram
unchanged. Therefore, if a sequence s is different from r by
k substitutions, s should contain at least one q-gram of the
selected k + 1 non-overlapping q-grams of r. This technique
can be generalized by selecting k+c non-overlapping q-grams
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Fig. 2. Excerpt of a reference and a portion of its 3-gram inverted index

of r. In this case, s should contain at least c q-grams among
the selected k + c q-grams.

These filtering techniques are often used with an inverted
index. We first retrieve inverted lists of q-gram signatures
extracted from a read, and then generate candidate positions as
follows. If we use the count filtering, we select those positions
as candidate positions that appear on at least T inverted lists.
If we use the pigeonhole principle, we take the union of the
inverted lists to generate candidate positions. When using these
techniques, we should normalize positions on an inverted list
considering relative positions of the corresponding q-gram in
a read. That is, if the position of a signature q-gram in a read
is l, we subtract l from each position p on the inverted list of
the q-gram in order to align p with the start position of the
read. The following example illustrates candidate generation
using the pigeonhole principle.

Example 3: Consider a read r = TAACTGAGAAATTA and
a reference sequence with its 3-gram inverted index shown in
Figure 2. Given a hamming distance threshold 2, we can gen-
erate candidate positions using three non-overlapping 3-grams
from r based on the pigeonhole principle. Suppose we select
(TAA, 0), (GAG, 5), and (TTA, 11) in G(r, 3). We first look up
the selected 3-grams in the index and retrieve two inverted lists
of TAA and GAG (note that the 3-gram TTA does not appear
in any position of the reference sequence, and thus the index
does not contain an inverted list for the gram). We then take
the union of the two inverted lists as follows. We directly add
positions on the inverted list of TAA to a candidate list since
these positions are aligned with the read’s start position. For
the positions on the GAG’s inverted list, we normalize them
to align the read’s start position. The 3-gram GAG appears
at position 5 in the read, so the normalized positions of the
elements on the GAG’s inverted list are 120 − 5 = 115,
208 − 5 = 203, and 220 − 5 = 215, respectively. We merge
the normalized positions with the candidate list to generate
candidates {103, 115, 203, 215}. By verifying subsequences of
the reference starting at these positions, we can get a mapping
at position 103 with a hamming distance 2.

C. Related Work

Many techniques have been proposed for efficient process-
ing of similarity queries [3], [4], [5], [6], [7], [8], [9], [10],
[11]. The focus of these techniques has been on reducing the
number of candidates in a filtering phase. Most of them make

use of inverted index to generate candidates. Early work (e.g.,
[8], [9], [10], [11]) utilizes variations of the count filtering,
while recent techniques (e.g., [5], [6], [7]) have been proposed
based on the pigeonhole principle.

There are a number of techniques proposed for solving read
mapping problems. Hobbes [1] is a software package proposed
to identify all mapping positions of a read. It generates
candidate positions using inverted lists of non-overlapping q-
grams with the help of bit vectors. Hobbes2 [2] uses additional
prefix q-grams instead of bit vectors to further reduce the
number of candidates initially generated. Recently developed
read mappers (e.g., RazerS3 [12] and Masai [13]) have focused
on supporting indel errors and improved the performance
in terms of accuracy and speed. RazerS3 generates accurate
mapping results by controlling mapping sensitivity based on its
error-estimation technique. Masai reduces mapping time sig-
nificantly by building an index on input reads and simultane-
ously generating candidate positions for multiple reads. More
recently, Bitmapper [14] has been proposed for improving
candidate verification. It verifies multiple candidate positions at
the same time using a variation of Myers’ bit vector verification
algorithm [15].

Other popular read mapping softwares (e.g., Bowtie [16],
Bowtie2 [17], BWA [18], and Gem [19]) have been developed
aiming at identifying one or a few top mapping positions for
each read. This mapping strategy leads to a significant im-
provement in mapping speed. However, in many applications
such as ChIP-seq experiments [20] and RNA-seq transcript
abundance quantification [21], [22], it is often more desirable
to identify all candidate positions of reads.

III. VARIABLE-LENGTH SIGNATURE SELECTION

In this section, we first propose our technique to make a
variable-length signature and generate candidate positions of
the signature using fixed-length q-gram inverted index. We then
present a dynamic programming algorithm that selects optimal
signatures using a cost model.

A. Generating Variable-Length Signatures

We begin with a notation and basic definitions useful for
describing the technique. For a sequence r, let s[b .. e] denote
the subsequence of s that begins at position b and ends at
position e. We call a subsequence of s a segment. Since we
use a subsequence of a read as a signature, we use a signature
and a segment interchangeably in this paper.

Definition 1: Given a reference sequence Γ and a segment
s of a read occurring at a position l, L(s) denotes a set contain-
ing every position o in Γ such that Γ [o+l .. o+l+|s|−1] = s.
Let I(s) be an inverted list of s. Then, L(s) = {p−l|p ∈ I(s)}.

Example 4: Consider the reference sequence in Figure 2
and a 3-gram (GAG, 5) of the read r in Example 3. L(GAG)
is {115, 203, 215}, which contains normalized positions of the
elements on the GAG’s inverted list.

Definition 2: Given two overlapping or consecutive seg-
ments s1 and s2 of a read r occurring at positions l1 and l2
respectively, s1 ·s2 denotes a segment r[l1 .. l2− l1+ |s2|−1].

Example 5: For the two overlapping 3-grams g1 =
(TTA, 0) and g2 = (ACT, 2) of the read r in Example 3, g1 ·g2
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denotes the positional 5-gram (TTACT, 0) of r. For the two
consecutive 3-grams g1 = (TTA, 0) and g3 = (CTG, 3), g1 · g3
denotes the positional 6-gram (TTACTG, 0) of r.

Lemma 1: Given a reference sequence Γ and two over-
lapping or consecutive segments s1 and s2 of a read r,
L(s1) ∩ L(s2) = L(s1 · s2).

Proof: Let l1 and l2 be a position of s1 and s2 in r,
respectively. The position of s1 ·s2 in r is l1 (by Definition 2).
For each position l in Γ where s1·s2 appears, l−l1 is contained
in L(s1 · s2) (by Definition 1). We first show that l − l1 is
also contained in both L(s1) and L(s2) to prove L(s1 · s2) ⊂
L(s1)∩L(s2). Since the position of s1 ·s2 in Γ is l, s1 appears
at position l in Γ and s2 appears at position l + l2 − l1 in Γ
by Definition 2. Hence, the normalized position of s1 is l− l1,
and that of s2 is (l + l2 − l1) − l2 = l − l1. By Definition 1,
these positions are contained in L(s1) and L(s2), respectively.

For each position l′ ∈ L(s1) ∩ L(s2), we now show that
l′ ∈ L(s1 · s2) to prove L(s1) ∩ L(s2) ⊂ L(s1 · s2). Since
l′ ∈ L(s1) ∩ L(s2), s1 appears at position l′ + l1 in Γ and s2
appears at position l′ + l2 in Γ by Definition 1. Hence, s1 · s2
appears at position l′ + l1 in Γ and l′ ∈ L(s1 · s2).

Given a q-gram inverted index of a reference sequence,
we can combine a few overlapping and/or consecutive q-
grams in a read into a variable-length signature and generate
positions of subsequences in the reference that contain the
signature at the same relative position as the read. Hence,
we can generate candidate mapping positions for a read by
selecting fixed-length q-grams, combining them into k+1 non-
overlapping variable-length signatures, and taking the union of
positions in the reference corresponding to these signatures.
After we define a positional intersection, we give an example
to demonstrate how we generate candidate positions using
variable-length signatures extracted from a read.

Definition 3: Given two sets of positions S1 and S2, their
positional intersection, denoted by S1 ∩Δn S2, is defined as
{l1|l1 ∈ S1 and ∃ l2 ∈ S2 s.t. l2 − l1 = n}.

Example 6: In Example 3, suppose we choose three seg-
ments of (TAACT, 0), (GAGAA, 5), and (TTA, 11) as signatures
from the read. By the pigeonhole principle, candidate mapping
positions are contained in L(TAACT)∪L(GAGAA)∪L(TTA). In
order to generate candidate positions for the segment TAACT,
we decompose the 5-gram (TAACT, 0) into the two overlapping
3-grams of (TAA, 0) and (ACT, 2) since we have a 3-gram
inverted index. By Lemma 1, L(TAACT) = L(TAA)∩L(ACT).
For each position l ∈ L(TAA)∩L(ACT), l1 = l+0 ∈ I(TAA)
and l2 = l + 2 ∈ I(ACT) (by Definition 1). That is, for
each position l1 ∈ I(TAA) and each position l2 ∈ I(ACT),
l1 − 0 ∈ L(TAACT) if and only if l2 − l1 = 2, where 2 is the
difference of positions between the two 3-grams of (TAA, 0)
and (ACT, 2). Therefore, the positional intersection between
I(TAA) and I(ACT) can be used to generate L(TAACT) as
follows:

L(TAACT) = {l − 0|l ∈ I(TAA) ∩Δ2 I(ACT)} = {103}.
Likewise, we generate L(GAGAA) and L(TAA) using the
inverted lists of the 3-grams, GAG, GAA, and TAA, as follows:

L(GAGAA) = {l − 5|l ∈ I(GAG) ∩Δ2 I(GAA)} = {215},
L(TTA) = {l − 11|l ∈ I(TTA)} = ∅.

Hence, the candidate mapping positions are 103 and 215. By
verifying the positions, we get a true mapping position of 103
with a hamming distance 2.

B. Optimal Signature Selection

Selecting a good combination of signatures is crucial to the
performance of read mapping. As we describe in Section II,
we need at least k + 1 non-overlapping signatures to gener-
ate candidate positions for a hamming distance threshold k.
Hobbes [1] selects k + 1 q-grams such that the sum of fre-
quencies of the selected q-grams is minimized. Its approach is
an optimized one in that both the verification cost for candidate
positions and the scanning cost for inverted lists are minimized.
Unlike Hobbes, however, selecting signatures by minimizing
the sum of their frequencies does not guarantee achieving
the best performance in our technique. Let us consider the
following example.

Example 7: Given a reference sequence, Figure 3 shows
a read and q-gram frequencies at each position of the read
(i.e., the number of positions in the reference sequence that
each q-gram appears). Suppose we have a 4-gram inverted
index of the reference sequence. Given a hamming distance
threshold 2, Hobbes selects three non-overlapping 4-grams of
(TCTC, 2), (ACCC, 6), and (GAAC, 11) (circled in the figure) to
minimize the sum of frequencies of selected grams. Using the
proposed technique described in the previous section, we may
select three variable-length signatures (GGTCT, 0), (CACCCT,
5), and (GAAC, 11) (pentagon-shaped in the figure). Note
that their sum of frequencies is minimum among those of
all possible three non-overlapping segments of the read. To
generate candidate positions for the 6-gram of (CACCCT, 5),
however, we need to scan a high-frequency 4-gram of (CACC,
5). Hence, the performance may not be optimized with the
selected signatures although we can expect to minimize the
number of candidates.

Since we dynamically generate positions in a reference
sequence corresponding to a signature using q-gram inverted
lists, the frequency of the signature is not proportional to
the scanning cost of inverted lists as we illustrated in Ex-
ample 7. Therefore, we need to balance between the number
of candidates (or the cost of verifying candidates) and the
cost of scanning inverted lists when we select variable-length
signatures produced using the proposed technique. For this
end, we need to estimate mapping cost (i.e., cost for generating
and verifying candidates) of each combination of signatures.
A naive approach is to enumerate all possible combinations
of k+1 signatures, evaluate their estimated costs, and choose

Fig. 3. A read and its frequencies of q-grams in a reference sequence
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one with a minimum cost. However, enumerating all possible
combinations is obviously inefficient.

We propose a dynamic programming algorithm that selects
an optimized combination of signatures based on estimated
costs. We assume that each signature generates candidates in-
dependently as all existing techniques do. Hence, we estimate
the cost of mapping a read by summing up the mapping cost
of each signature.

Given a q-gram inverted index of a reference sequence,
the mapping cost of a signature s of a read r is estimated
as follows. Let Q be a set of q-grams used for making the
segment s as we described in the previous section. To generate
candidates for s, we need to take the positional intersection of
inverted lists of q-grams in Q. Hence, the cost for generating
candidates is

∑
g∈Q |I(g)|, where |I(g)| denotes the size of the

inverted list of a q-gram g, or the frequency of g. To verify
a candidate position for a hamming distance threshold, we
need to compare each character in r with a character in the
candidate subsequence once. Since we have |L(s)| candidate
positions for s, the cost for verifying candidates is estimated
as μ × |r| × |L(s)|, where μ is a constant.2 Therefore, the
mapping cost of a signature s, denoted by C(s), is estimated
as

C(s) =
∑
g∈Q

|I(g)|+ μ× |r| × |L(s)|. (1)

In the following recurrence, M [r, k+1] stores a minimum
cost for mapping a read r (i.e., r[0 .. |r|−1]) when a maximum
number of allowed errors is k, or the number of signatures to
be selected is k + 1.

M(r, k + 1) = min{C(r[i .. j]) +M(r[j + 1 .. |r| − 1], k)},
where 0 ≤ i ≤ j− q+1 ≤ |r| − (k+1) ∗ q, and M(∗, 0) = 0.
Algorithm 1 is a dynamic programming algorithm that selects
an optimized combination of signatures from a read based on
the recurrence above. The algorithm consists of the following
two parts.

Minimum-cost calculation (the for loop in line 4): M [i][n]
in Algorithm 1 stores the minimum cost of n signatures from
r[i .. |r| − 1]. It corresponds to M(r[i .. |r| − 1], n) in the
recurrence above. Given a read r with a hamming distance
threshold k, the algorithm calculates the matrix M to obtain
M [0][k + 1], which is the minimum cost of k + 1 signatures
selected from r[0 .. |r|−1]. The for loop calculates the matrix
for the nth signature after calculating the matrix for n − 1
signatures. It is worth noting that the algorithm as well as the
recurrence above calculates costs of signatures starting from
a suffix of the read. Hence, to select the nth signature, the
algorithm needs to select n − 1 signatures in a suffix of the
read and n sigs − n signatures in a prefix of the read. This
gives a lower bound of the start position and an upper bound of
the end position of the nth signature as depicted in Figure 4.
Since the minimum length of a signature is q, which is the
length of indexed grams, the lower bound of the start position
lb is (n sigs−n)∗ q (line 5), and the upper bound of the end
position ub is |r|− (n−1)∗ q−1 (line 6). Note that the upper
bound of the start position is ub− q + 1.

2If we use a banded semi-global alignment algorithm for an edit distance
threshold k, the cost for verifying a candidate is proportional to k× (|r|+k),
and thus the verification cost in C(s) is modified as μ×k×(|r|+k)×|L(s)|.

Algorithm 1: SignatureSelection(r, k)

input : r is a read,
k is a maximum number of allowed errors

output: a set of L(s)’s for each selected signature s

1 n sigs ← k + 1;
2 for i ← 0 to |r| − 1 do
3 M [i][0] ← 0;

4 for n ← 1 to n sigs do
5 lb ← (n sigs− n) ∗ q; // q is a gram length
6 ub ← |r| − (n− 1) ∗ q − 1;
7 for i ← lb to ub− q + 1 do
8 min ← ∞;
9 for j ← i+ q − 1 to ub do

10 cost ← C(r[i .. j]) +M [j + 1][n− 1];
11 if cost < min then
12 min ← cost; end ← j;

13 M [i][n] ← min;
14 E[i][n] ← end;

15 B[ub− q + 1][n] ← ub− q + 1;
16 for i ← ub− q down to lb do
17 if M [i][n] > M [i+ 1][n] then
18 M [i][n] ← M [i+ 1][n];
19 B[i][n] ← B[i+ 1][n];

20 else
21 B[i][n] ← i;

22 sig ← ∅; begin ← 0;
23 for n ← n sigs down to 1 do
24 begin ← B[begin][n];
25 end ← E[begin][n];
26 sig ← sig ∪ {r[begin .. end]};
27 begin ← end+ 1;

28 return sig;

(n_sigs – n)*q (n – 1)*q

lb ub0

read

|r|

n_sigs – n signatures n – 1 signaturesnth signature

Fig. 4. Lower and upper bounds of the nth signature

For each start position i of the nth signature (the for loop in
line 7), the algorithm calculates costs of n signatures (line 10)
considering all possible end positions j (the for loop in line 9).
Then, it saves the minimum cost in M [i][n] (line 13) with
the corresponding end position in E[i][n] (line 14). To make
M [i][n] keep the minimum cost of n signatures from r[i .. |r|−
1], the algorithm modifies M [i][n] as follows (lines 15–21). For
each start position i, it finds a position b such that M [b][n] =
minub−q+1

s=i M [s][n], and replaces M [i][n] with M [b][n] (line
18). It also stores b in B[i][n] to immediately find the start
position of the nth signature in r[i .. |r| − 1] (in lines 15, 19
and 21).

Signature generation (the for loop in line 23): In opposite
to the cost calculation, the algorithm selects an optimal combi-
nation of signatures from the beginning of the read. The start
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position of the first signature is stored in B[0][k+1] (line 24)
and its end position is stored in E[B[0][k+1]][k+1] (line 25).
The algorithm selects remaining k signatures in the same way
(the for loop in line 23) and returns the selected signatures
(line 28).

Example 8: Consider a read r in Figure 3 assuming a 4-
gram inverted index. Given a hamming distance threshold 2,
Algorithm 1 calculates costs of three signatures as follows.
To select the first signature, it leaves room for two remaining
signatures in a prefix of the read. Since the minimum size
of a signature is 4, the minimum prefix for the two remaining
signatures is r[0 .. 7], and the lower bound of the start position
of the first signature is 8. It is obvious that the upper bound of
the end position of the first signature is |r|−1 = 14. For a start
position 8, the algorithm considers end positions of 11, 12, 13,
and 14. In this example, we set μ to 1 in Equation 1. Hence,
mapping costs of r[8 .. 11], r[8 .. 12], r[8 .. 13], and r[8 .. 14]
are calculated as 42+15×42 = 672, (42+26)+15×15 = 293,
(42 + 22) + 15 × 7 = 169, and (42 + 20) + 15 × 6 = 152,
respectively. Since r[8 .. 14] has a minimum cost, the algorithm
fills M [8][1] with the cost 152 and saves the end position 14
in E[8][1]. It fills M [∗][1] and E[∗][1] for start positions of
9, 10, and 11 of the first signature in the same way. For the
start position 8, the algorithm modifies the value of M [8][1]
to the value of M [9][1] = 151, which is the minimum cost
among M [i][1] where 8 ≤ i ≤ 11. Then, it saves the start
position 9 in B[8][1]. In the same way, it modifies M [∗][1] and
fills B[∗][1] as depicted in Figure 5 (M /E/B[i][j] corresponds
to the ith column and the jth row of the matrix M /E/B in
the figure). Now, we consider the second signature. Its lower
and upper bounds are 4 and 10, respectively. For the start
position 4, the algorithm considers end positions of 7, 8, 9,
and 10, and calculates mapping costs of r[4 .. 7], r[4 .. 8],
r[4 .. 9], and r[4 .. 10]. It adds M [8][1], M [9][1], M [10][1],
and M [11][1] into the costs of r[4 .. 7], r[4 .. 8], r[4 .. 9],
and r[4 .. 10], respectively. Then, it chooses a minimum cost,
C(r[4 .. 10])+M [11][1], and saves the cost in M [4][2] and the
end position of r[4 .. 10] in E[4][2]. M [∗][2] and E[∗][2] are
filled in this way. The algorithm modifies M [∗][2] in the same
way as M [∗][1] and saves the start positions in B[∗][2]. It also
processes segments for the third signature in the same way and
fills the matrices as depicted in Figure 5. Once the matrices
are filled, the algorithm selects an optimal combination of
three signatures (star-shaped in Figure 3) as follows. It selects
signatures starting from the beginning of the read. The start
position b0 = 0 of the first signature is recorded in B[0][3]. It

M
M
M
M

E
E
E

B
B
B

Fig. 5. A running example of signature selection for a read in Figure 3

finds the end position e0 = 5 of the first signature in E[b0][3].
Thus, the first signature is r[0 .. 5]. The start position b1 = 6
of the second signature is stored in B[e0 + 1][2] = 6. The
end position of the second signature is E[b1][2] = 10, and
thus the second signature is r[6 .. 10]. Similarly, the algorithm
identifies the third signature r[11 .. 14].

In our example, we assume that frequencies of segments
of different lengths are given. Since we use a q-gram inverted
index, however, frequencies of segments whose lengths are
greater than q are unknown. Hence, we need to estimate
frequencies of those segments to select optimal signatures.
Although we can use existing intersection-size-estimation tech-
niques (e.g., [23], [24]) with simple modifications, they in-
crease index building time as well as index size. In this paper,
we estimate the frequency of a segment s of a read as follows.
We find a minimum frequency among the frequencies of q-
grams in G(s, q) using a q-gram inverted index on a reference
sequence. It is obvious this frequency is an upper bound of
the frequency of s, and we can use this upper bound as
an estimated frequency value of s. This approach, however,
makes multiple segments sharing a low-frequency q-gram have
the same estimated frequency. To alleviate the problem, we
make a simplified assumption that the length of a segment is
inversely proportional to the frequency of the segment. Based
on the assumption, we divide the upper bound by the difference
between the length of s and the q-gram length. Hence, the

estimated frequency of s, denoted by ˆ|L(s)|, is

ˆ|L(s)| = ming∈G(s,q){|I(g)|}
|s| − q

,

where |s| > q. Note that when |s| = q, s contains one q-gram
and we directly find |L(s)| from a q-gram inverted index.

Hobbes2 [2] proposed to select k + 2 non-overlapping
q-grams for generating candidate positions. It showed that
adding an additional q-gram significantly reduces the number
of candidates and improves the performance of read mapping.
Based on the observation of Hobbes2, we take the approach
of selecting k + 2 signatures in this paper. According to
Hobbes2, it is still reasonable to assume that each signature
independently generates candidate positions when we use k+2
signatures. Hence, we can select an optimal combination of
k + 2 signatures by assigning k + 2 to n sigs (line 1 of
Algorithm 1).

IV. CANDIDATE GENERATION AND VERIFICATION

In this section, we present candidate generation and veri-
fication techniques considering indel errors. We first define a
matched signature of a candidate position as follows.

Definition 4: Given a signature r[b .. e] of a read r and
a position l of a reference sequence Γ , r[b .. e] is a matched
signature of l if and only if Γ [l + b .. l + e] = r[b .. e].

Example 9: Consider a reference sequence Γ1 and a read
r in Figure 6. r[3 .. 7] is a matched signature of position 1 of
Γ1 since Γ1[1 + 3 .. 1 + 7] = r[3 .. 7].

Unlike mismatch errors, indel errors introduce the fol-
lowing two problems in generating and verifying candidate
positions.
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read r

reference 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 …

reference  2

A G A T G A T C T G C A T A A …

A A G T G A T C T G A T A A T …
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 …

A G T G A T C T G C A T A A …
0 1 2 3 4 5 6 7 8 9 10 11 12 13

Fig. 6. Problems caused by indel errors

• A candidate position is determined by the relative
position of a matched signature in a read as we
described in Section II. If we consider indel errors,
however, there is a problem that a candidate position
cannot be exactly determined due to indel errors
occurring before any matched signatures. Indel errors
occurring after any matched signatures cause a similar
problem that the length of a candidate subsequence is
not deterministic.

• Because we use k + 2 signatures for an edit distance
threshold k, a candidate position of a reference needs
to have at least two matched signatures of a read.
Indel errors occurring between two signatures of a
read can prevent a true mapping position from being
a candidate position.

Example 10: Given a read r and a reference sequence
Γ1 in Figure 6, we have two matched signatures of GATCT
and ATAA as shown in the figure. According to the relative
positions of matched signatures, position 1 of Γ1 becomes
a candidate position. However, a true candidate position is
position 0 due to a deletion of A at position 2 of Γ1. Let us
consider another reference sequence Γ2 in Figure 6. Position 0
and position 1 of Γ2 have one matched signature, respectively.
A candidate position needs to have at least two matched
signatures in the (k + 2)-signature scheme, and thus these
positions will be dropped. If we take it into consideration to
insert C between positions 9 and 10 of Γ2, however, position 1
of Γ2 becomes a candidate position.

Suppose we map a read r against a reference sequence Γ
with a maximum number of allowed indel errors k. Given a
candidate position l of Γ , we need to consider up to k positions
left/right to l to handle deletions/insertions occurring before
any matched signatures. That is, every position in [l−k, l+k]
needs to be considered as a candidate position. Similarly, to
handle indel errors occurring after any matched signatures, we
need to consider the length of a candidate subsequence up to
|r|+k for the candidate position l. That is, the upper bound of
the end position for the candidate position l is l+ |r|+ k− 1.
Note that if a true mapping position is l + α, where α ≤
k, the maximum number of allowed errors after any matched
signatures is k − α, since α deletions in Γ occur before any
matched signatures. Hence, the upper bound of the end position
for the candidate l is still l+|r|+k−1. Therefore, we can solve
the problem of indel errors before/after any matched signatures
by using a verification window of Γ [l − k .. l + |r|+ k − 1],
which we call a full-verification window.

To reduce verification overheads, Hobbes and Hobbes2 do
not consider a full verification window and they miss some
true mapping positions. In Hobbes3, we perform a banded
semi-global alignment implemented using Myers’ bit-vector
algorithm [15] on a full-verification window. In case that

multiple mapping positions are found in a verification window,
we choose one position with a minimum edit error as a
mapping position.

To solve the problem caused by indel errors between two
signatures of a read, we need to consider certain positions
having only one matched signature as candidate positions
as we illustrated in Example 10. Given two positions l1
and l2, each of which has only one matched signature and
l1 − l2 ≤ k, Hobbes2 makes both positions as candidate
positions. In Hobbes3, however, we use either l1 or l2 as a
candidate position based on the following lemma.

Lemma 2: Given a read r and a candidate position l of
a reference sequence Γ , suppose we use a full-verification
window of Γ [l − k .. l + |r| + k − 1] for an edit distance
threshold k. Consider two positions l1 and l2 in Γ such that
each of them has only one matched signature. If |l1− l2| ≤ k,
it does not lose any true mapping position to make either l1
or l2 as a candidate position.

Proof: Let s1 and s2 be the matched signatures of l1 and
l2, respectively, where the position of s1 in r is less than that
of s2. Here, we prove the case of l1 < l2, and the case of
l1 > l2 can be proved similarly. As l1 < l2, we need l2 − l1
deletions between s1 and s2 in Γ to map the read r. Hence, if
there is no indel error before s1, the start position of r should
be aligned with l1.

Suppose we use l1 as a candidate position. Indel errors
before s1 will be covered by the verification window. In this
case, the end position of r will be aligned with l1+ |r|+(l2−
l1)−1 = |r|+ l2−1 of Γ if there are no indel errors after s2.
Since we already have l2 − l1 errors before s2, the maximum
number of allowed indel errors after s2 is k− (l2− l1). Hence,
the largest end position of Γ is (|r|+l2−1)+{k−(l2−l1)} =
l1 + |r|+ k− 1, which is covered by the verification window.
Therefore, we can use l1 as a candidate position.

If we use l2 as a candidate position instead of l1, the largest
end position of Γ will be covered by the verification window
since l1 < l2. The maximum number of allowed indel errors
before s1 is k− (l2 − l1) because l2 − l1 deletion errors occur
after s1. The smallest start position of Γ that can be aligned
with the read is l1 − {k − (l2 − l1)} = l2 − k, which is
covered by the verification window. Therefore, we can use
l2 as a candidate position instead of l1.

Algorithm 2 generates candidate positions using selected
signatures of a read. For each signature s, a list of candidate
positions, L(s), is assumed to be built using a q-gram inverted
index while selecting the signature, where positions in L(s)
are sorted in the ascending order of their values. The algorithm
first copies candidate positions of the first signature into the
candidate list (line 3). It then merges candidate positions of
each remaining signature into the candidate list (for loop in
line 5). To minimize costs of scanning lists, it sorts lists by
their sizes before merging them (line 1). It finally returns those
positions that appear at least twice (line 28 and line 29). For
a position l appearing only once, if there exists a position l′
such that |l − l′| ≤ k, the algorithm makes l as a candidate
position according to Lemma 2 (else if statement in line 21
and else statement in line 24).
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Algorithm 2: GenerateCandidates(k, s)

input : k is an edit distance threshold,
s = {s0, . . . , sk+1} is a set of k + 2 signatures

output: a list of candidate positions c.

1 sort signatures in s by their frequencies;

2 c ← empty list of (pos, cnt) pairs;
3 foreach pos ∈ L(s0) do
4 c.push back(pos, 1);

5 for i ← 1 to k + 1 do
6 c′ ← empty list of (pos, cnt) pairs;
7 j1 ← 0 // index of the 1st element in c;
8 j2 ← 0 // index of the 1st element in L(si);

/* assume each list contains max value at the end */
9 while j1 < c.size() or j2 < L(si).size() do

10 if c[j1].pos− L(si)[j2] > k then
11 c′.push back(L(si)[j2], 1);
12 j2 ← j2 + 1;

13 else if c[j1].pos− L(si)[j2] < −k then
14 c′.push back(c[j1].pos, c[j1].cnt);
15 j1 ← j1 + 1;

16 else
17 if c[j1].pos = L(si)[j2] then
18 c′.push back(c[j1].pos, c[j1].cnt+ 1);
19 j1 ← j1 + 1;
20 j2 ← j2 + 1;

21 else if c[j1].pos > L(si)[j2] then
22 c′.push back(L(si)[j2], 2);
23 j2 ← j2 + 1;

24 else
25 c′.push back(c[j1].pos, c[j1].cnt+ 1);
26 j1 ← j1 + 1;

27 c ← c′;

28 remove every pos from c whose cnt is less than 2;
29 return c;

V. EXPERIMENTAL RESULTS

In this section, we present experimental results of mapping
single-end reads and paired-end reads, where a single-end read
(also called just a read) is a subsequence of a reference genome
sequence while a paired-end read is a pair of single-end reads.
To map a paired-end read, we first map each single-end read in
the pair and then identify if the difference between the mapping
positions of the two single-end reads is within a predefined
range.

A. Experimental Setup

We implemented Hobbes3 in C++, and compiled it with
GCC 4.4.3. All experiments were run on a machine with 32 GB
of RAM, and Intel core i7 (4 cores and 8 threads total) at 3.4
GHz, running a 64-bit Ubuntu OS. We thoroughly compared
Hobbes3 with five state-of-the-art so-called “all-mappers,”
which are designed to return all mapping positions of a read -
Hobbes2, Bitmapper, Masai, Yara [25], and RazerS3, and three
other popular read mappers - Gem [19], BWA, and Bowtie2.

We did not include other all-mappers (such as SOAP2 [26],
SHRiMP2 [27], mrsFAST [28], and mrFAST-CO [29]) in
our comparison as it has been shown previously that these
all-mappers do not perform as well as Hobbes2, Bitmapper,
RazerS3, and Masai.

In the experiments, we used the human genome HG18
as the reference sequence. The human genome has many
applications, and thus existing read mappers mainly focus on
mapping reads against this sequence. Although previous work
had additional experiments on smaller genomes, mapping reads
against those smaller genomes is usually fast and less chal-
lenging than against the human genome. Due to limited space,
we only focused on the human genome in our experiments.
We generated simulated reads of length 100 bp and 500 bp,
respectively, from HG18 using a read simulator, Mason [30],
which was configured as the default profile setting with the
illumina option. We also used real reads of length 100 bp
from specimen HG00096 of the “1000 genome project” [31].
We mapped reads against the reference sequence using edit
distance constraints. For the down-stream applications using
all-mappers, the edit distance threshold is usually set to 4% or
5% of the read length [14]. We also set edit distance thresholds
to around 5% errors of the read length in our experiments.

The weight of scanning cost and that of verification cost
differ from each other, and the verification of a candidate is
terminated early as soon as we find that the candidate does not
meet the threshold. In Hobbes3, the parameter μ in Equation 1
was used to reflect these factors. Through experiments, we
observed that the parameter was not very sensitive and we
tuned it to 0.1.

B. Configurations of Read Mappers

We configured read mappers to return all mapping positions
and output results in the SAM format [32] with cigar strings.
The following are the details of the configuration of each tool.
Unless otherwise stated, other options of the mappers were
configured as their default settings.

• Hobbes: we used Hobbes version 3.0 for Hobbes3 and
version 2.1 for Hobbes2. In order to use Hobbes as
an all-mapper, we specified the -a option. We used
the --indel option for edit distance constraints. For
the paired-end mapping, we set --min and --max
parameters to 110 and 290, respectively. We used an
11-gram inverted index for edit distance 5 and 6, and
a 10-gram inverted index for edit distance 7.

• RazerS3: version 3.4 was used. To use RazerS3 as
an all-mapper, we set the parameter -m to 1,000,000.
We set the parameters -ll and -le to 200 and 90,
respectively, for the paired-end mapping.

• Masai: version 0.7.2 was used. To use Masai as an
all-mapper, we used the ‘-mm all’ option. We set
-ll and -le parameters to 200 and 90, respectively,
for the paired-end mapping.

• Yara: version 0.9.3 was used. We used the ‘--all’
option to configure Yara as an all-mapper.

• Bitmapper: version 1.0.0.7 was used. Bitmapper is
an all-mapper supporting edit distance only, and thus
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we do not need to configure it. For the paired-end
mapping, we set --min and --max parameters to
110 and 290, respectively. We built an index using
11-grams for the experiments.

• BWA: version 0.7.12 was used. We used the -N option
to configure BWA as an all-mapper. To specify an edit
distance 5, we set -n, -o, and -e parameters to 5,
5, and -1, respectively. We used the aln command to
align reads and the samse command to convert the
output into SAM format output. The output conversion
time was included in the mapping time.

• Bowtie2: version 2.2.6 was used. We used the --all
option to configure Bowtie2 as an all-mapper. To spec-
ify an edit distance 5, we used the --end-to-end
and --ignore-quals options and set the --mp,
--np, --rdg, --rfg, and --score-min param-
eters to [1,1], 1, [0,1], [0,1], and [L,0,−0.05], respec-
tively.

• Gem: version 1.376 was used. To specify an edit
distance 5, we used ‘quality-format = ignore’
and set both -m and -e parameters to 5. To configure
Gem as an all-mapper, we set -d parameter to all
and -s parameter to 1,000,000. We converted the
output of gem-mapper into SAM format output
using gem-2-sam. We included the conversion time
in the mapping time.

C. Effects of Gram Length and Number of Signatures

A gram length of an inverted index greatly affects the
performance of read mapping. By using a large q value, we can
shorten lengths of inverted lists, and thus reduce scanning cost
for inverted lists as well as the number of candidates. In the
(k+ 2)-signature scheme, the upper bound of q is determined
by an edit distance threshold k and the length of a read r as
follows:

qupper =

⌊ |r|
k + 2

⌋
.

If we use qupper, however, we lose opportunities to select
good signatures. For 100-bp reads with k = 7, for instance,
we have no chance to select a good combination of signatures,
since there is only one combination of k+2 signatures for each
read. To solve the problem, we use the following gram length:

qgood =

⌊ |r|
k + 3

⌋
.
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Fig. 7. Effects of gram length and number of signatures. Note that the
maximal allowable gram length is 11 for the (k + 2)-signature scheme when
ED=7.

We ran an experiment to evaluate the effect of a gram
length q on the performance. In the experiment, we mapped
1 million 100-bp real reads against HG18 using 8 threads for
various edit distance thresholds and gram lengths. Figure 7(a)
shows the results. As shown in the figure, we obtained the best
performance with qgood for each edit distance threshold.

We also compared the (k + 1)-signature scheme with the
(k + 2)-signature scheme. For this experiment, we used edit
distance threshold 7. Figure 7(b) shows the results. The obser-
vation of Hobbes2 is also valid for the proposed variable-length
signatures, and the (k+2)-signature scheme outperformed the
(k + 1)-signature scheme in all gram lengths as shown in the
figure.

D. Index Construction and Memory Footprint

We built an inverted index of overlapping q-grams on the
reference genome HG18. Hobbes3 eliminates bit vectors from
an index, and thus the size of an index on disk is the same as
that in memory. For the human genome HG18, the index size
is about 11 GB. Hobbes2 uses 16-bit vectors, resulting in an
index size of 17 GB for HG18. Although Hobbes2 keeps about
11GB index in memory by removing bit vectors while loading
index into memory, it needs to scan the whole index on disk
to load the index. Hence, the index loading step of Hobbes2
is slower than that of Hobbes3. For HG18, Hobbes3 loads an
index about two times faster than Hobbes2. Since Hobbes3,
similar to Hobbes2, has a tight-knit multi-threaded framework
that parallelizes both indexing and mapping, it took only a few
minutes to build an index for HG18.

E. Single-end Mapping

We used the Rabema [33] benchmark to compare accuracy
of read mappers. In Rabema, the accuracy is defined as follows.
Each read gives at most one point. If a read matches at
n positions, each found position gives 1/n point. To get
percentages, the number of achieved points is divided by the
number of reads and multiplied by 100. Rabema categorizes
mapping accuracy into all, all-best, and any-best. All denotes
all mappings within a given edit distance threshold, all-best
denotes all mappings with the lowest edit distance, and any-
best denotes any mapping with the lowest edit distance. The
following example demonstrates the accuracy and mapping
categories.

Example 11: Given a reference sequence and three reads
with an edit distance threshold 2, consider the numbers of all
possible mapping positions of each read and mapping results
of a read mapper in the following table:

read
# of all possible mapping positions results of a mapper
ED2 ED1 ED0 total ED2 ED1 ED0 total

r1 12 8 0 20 11 7 0 18
r2 12 6 4 22 10 6 3 19
r3 15 8 0 23 12 7 0 19

In the all category, the mapper has a 86.324% accuracy
since r1, r2, and r3 achieve 18/20, 19/22, and 19/23 point,
respectively, and the accuracy is computed as (18/20+19/22+
19/23)/3× 100% = 86.324%. We also compute the accuracy
with each distinct edit distance. For instance, the mapper
has a 91.6666% accuracy for those mappings having an edit
distance 1 as (7/8 + 6/6 + 7/8)/3 × 100% = 91.6666%. In
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TABLE I. RABEMA BENCHMARK RESULTS OF MAPPING 100K SIMULATED READS OF LENGTH 100 BP AGAINST HG18 (ED 5)

read time (min:sec) accuracy ( total ED0 ED1 ED2

ED3 ED4 ED5
) peak

mapper 1 thr 8 thrs all all-best any-best recall memory

Hobbes3 3:01 1:49 99.9999
100.0 100.0 100.0

100.00
100.0 100.0 100.0

100.00
100.0 100.0 100.0

99.092
100.0 100.0 100.0

14.6 GB100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Hobbes2 8:46 4:06 99.8573
100.0 100.0 100.0

99.9979
100.0 100.0 100.0

99.998
100.0 100.0 100.0

98.971
100.0 99.90 99.68

14.7 GB99.99 99.94 97.48 100.0 100.0 99.84 100.0 100.0 99.84 99.34 99.04 99.77

Bitmapper 3:23 2:05 99.9994
100.0 100.0 100.0

100.00
100.0 100.0 100.0

100.00
100.0 100.0 100.0

99.092
100.0 100.0 100.0

15.1 GB100.0 99.99 99.99 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Masai 9:56 − 99.8337
100.0 100.0 100.0

99.9455
100.0 100.0 100.0

99.9455
100.0 100.0 100.0

99.038
100.0 100.0 100.0

16.9 GB99.73 99.18 97.69 99.69 98.73 98.52 99.69 98.73 98.52 99.71 98.77 98.56

Yara 2:04 1:00 91.6214
98.87 97.90 94.46

97.6622
97.65 97.82 97.68

99.9354
100.0 100.0 99.87

96.693
97.69 97.73 97.32

5.3 GB81.95 55.03 22.57 97.32 96.46 96.54 99.54 99.06 99.07 96.85 96.42 96.44

RazerS3 18:58 13:06 99.9089
100.0 100.0 100.0

99.999
100.0 100.0 100.0

99.999
100.0 100.0 100.0

99.091
100.0 100.0 100.0

4.6 GB100.0 99.86 98.44 100.0 100.0 99.92 100.0 100.0 99.92 100.0 100.0 99.92

Bowtie2 − 296:31 99.7493
100.0 100.0 100.0

99.973
100.0 100.0 100.0

99.9748
100.0 100.0 100.0

98.85
100.0 99.71 99.46

22.4 GB100.0 99.55 95.75 100.0 99.70 98.35 100.0 99.72 98.45 99.17 98.77 98.56

BWA 41:41 11:35 97.7318
100.0 99.98 99.64

98.899
100.0 99.98 99.61

98.9032
100.0 99.98 99.61

97.607
100.0 99.49 98.58

7.4 GB93.47 82.91 75.15 93.03 78.87 70.57 93.03 78.98 70.73 91.59 78.28 71.18

Gem 2:31 1:11 97.7401
100.0 99.99 99.84

99.8657
100.0 99.88 99.81

99.9294
100.0 99.96 99.93

98.665
100.0 99.42 99.12

7.0 GB97.36 88.78 68.31 99.47 99.28 97.34 99.69 99.61 97.67 98.17 98.29 98.64

Bowtie2* 0:25 0:16 91.3477
98.87 97.75 93.55

97.0844
97.65 97.32 95.69

99.2916
100.0 99.45 97.65

95.966
97.79 96.86 94.95

3.3 GB81.07 53.90 21.95 95.38 93.98 93.74 97.41 96.24 95.89 94.67 93.33 93.49

BWA* 0:55 0:46 92.2733
100.0 99.82 96.90

98.793
100.0 99.83 99.41

98.8386
100.0 99.89 99.49

97.242
100.0 99.04 97.56

4.5 GB79.11 45.49 16.99 92.57 78.26 70.34 92.70 78.60 70.73 90.19 77.11 70.35

Gem* 0:14 0:06 94.3818
100.0 99.37 97.56

99.8612
100.0 99.88 99.80

99.9263
100.0 99.95 99.92

98.613
100.0 99.28 99.04

4.3 GB89.82 68.40 34.19 99.39 99.16 97.34 99.72 99.61 97.75 98.19 98.29 98.71

TABLE II. RESULTS OF MAPPING 1 MILLION REAL READS OF LENGTH 100 BP AGAINST HG18 (ED 5)

read time (min:sec) mapped accuracy ( total ED0 ED1 ED2

ED3 ED4 ED5
) peak

mapper 1 thr 8 thrs reads all all-best any-best memory

Hobbes3 21:07 5:43 915587 99.9997
100.0 100.0 100.0

99.9999
100.0 100.0 100.0

100.00
100.0 100.0 100.0

14.6 GB100.0 100.0 99.99 100.0 100.0 100.0 100.0 100.0 100.0

Hobbes2 59:49 15:25 915587 99.9096
100.0 100.0 100.0

99.9989
100.0 100.0 100.0

100.00
100.0 100.0 100.0

14.9 GB100.0 99.94 98.47 100.0 99.99 99.93 100.0 100.0 100.0

Bitmapper 20:27 5:11 915587 99.9989
100.0 100.0 100.0

99.9998
100.0 100.0 100.0

100.00
100.0 100.0 100.0

15.4 GB100.0 99.99 99.98 100.0 100.0 99.99 100.0 100.0 100.0

Masai 46:02 − 915559 99.9372
100.0 100.0 100.0

99.9959
100.0 100.0 100.0

99.9968
100.0 100.0 100.0

17.3 GB100.0 99.97 98.93 100.0 99.98 99.71 100.0 100.98 99.79

Yara 176:54 80:10 915377 89.9918
98.82 94.90 83.00

96.7318
97.52 96.40 94.09

99.9766
100.0 100.0 100.0

5.3 GB66.23 46.36 20.77 92.30 90.74 86.98 99.98 99.77 98.66

Gem 30:28 − 914405 97.9387
100.0 99.99 99.84

99.8441
100.0 99.99 99.96

99.8662
100.0 100.0 99.99

10.3 GB96.67 90.49 71.86 99.74 99.55 90.13 99.90 99.81 90.82

TABLE III. RESULTS OF MAPPING 1 MILLION REAL READS OF LENGTH 100 BP AGAINST HG18 (ED 6)

read time (min:sec) mapped accuracy ( total ED0 ED1 ED2 ED3

ED4 ED5 ED6
) peak

mapper 1 thr 8 thrs reads all all-best any-best memory

Hobbes3 47:45 11:36 925878 99.9991
100.0 100.0 100.0 100.0

100.00
100.0 100.0 100.0 100.0

100.00
100.0 100.0 100.0 100.0

14.9 GB100.0 99.99 99.99 100.0 100.0 100.0 100.0 100.0 100.0

Hobbes2 184:08 41:47 925877 99.8807
100.0 100.0 100.0 100.0

99.9989
100.0 100.0 100.0 100.0

99.9998
100.0 100.0 100.0 100.0

15.1 GB99.99 99.88 98.13 100.0 99.98 99.93 100.0 99.99 99.99

Bitmapper 38:00 8:57 892955 96.3954
95.62 96.22 97.82 98.83

96.391
96.00 96.53 97.89 98.72

96.4138
96.02 96.55 97.92 98.74

15.6 GB99.92 99.54 99.78 98.95 99.06 99.10 98.98 99.12 99.20

Masai 101:01 − 925811 99.8648
100.0 100.0 100.0 100.0

99.9901
100.0 100.0 100.0 100.0

99.9924
100.0 100.0 100.0 100.0

17.3 GB99.98 99.72 97.96 99.99 99.91 99.24 99.99 99.94 99.41

Yara 254:52 97:34 925773 88.2794
98.84 95.03 83.75 68.93

96.6238
97.52 96.41 94.09 92.33

99.9884
100.0 100.0 100.0 100.0

6.2 GB54.36 34.99 15.29 90.95 88.28 84.99 99.99 99.99 98.98

Gem 60:08 − 924806 97.3451
100.0 99.99 99.88 99.36

99.8526
100.0 99.99 99.97 99.86

99.877
100.0 100.0 99.99 99.93

14.6 GB94.31 86.54 66.53 99.62 99.24 88.97 99.82 99.68 89.85

TABLE IV. RESULTS OF MAPPING 1 MILLION REAL READS OF LENGTH 100 BP AGAINST HG18 (ED 7)

read time (min:sec) mapped accuracy ( total ED0 ED1 ED2 ED3

ED4 ED5 ED6 ED7
) peak

mapper 1 thr 8 thrs reads all all-best any-best memory

Hobbes3 119:43 25:03 934654 99.9983
100.0 100.0 100.0 100.0

100.00
100.0 100.0 100.0 100.0

100.00
100.0 100.0 100.0 100.0

14.9 GB100.0 100.0 99.99 99.98 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Hobbes2 491:23 107:30 934654 99.8612
100.0 100.0 100.0 100.0

99.9984
100.0 100.0 100.0 100.0

100.00
100.0 100.0 100.0 100.0

15.1 GB100.0 99.99 99.87 97.97 100.0 100.0 100.0 99.83 100.0 100.0 100.0 100.0

Bitmapper 83:10 26:45 934655 99.9888
100.0 100.0 100.0 100.0

99.9964
100.0 100.0 100.0 100.0

100.00
100.0 100.0 100.0 100.0

15.7 GB100.0 99.97 99.91 99.88 100.0 99.95 99.91 99.80 100.0 100.0 100.0 100.0

Masai 165:10 − 934586 99.8255
100.0 100.0 100.0 100.0

99.99
100.0 100.0 100.0 100.0

99.9925
100.0 100.0 100.0 100.0

17.3 GB99.99 99.96 99.54 97.60 99.99 99.98 99.84 99.16 99.99 99.98 99.89 99.36

Yara 233:50 97:33 934544 86.5594
98.86 95.13 84.17 70.28

96.505
97.52 96.41 94.09 92.33

99.998
100.0 100.0 100.0 100.0

6.2 GB57.86 43.17 26.42 11.70 90.97 88.29 85.97 82.75 99.99 100.0 99.99 98.75

Gem 167:41 − 933567 96.473
100.0 99.99 99.89 99.46

99.8376
100.0 99.99 99.97 99.87

99.8717
100.0 100.0 99.99 99.93

15.6 GB95.55 90.86 80.99 60.58 99.66 99.27 98.75 86.60 99.85 99.71 99.37 88.06

the all-best category, the mapper has a 83.3333% accuracy,
since the mapper achieves 7/8, 3/4, and 7/8 points with the
lowest edit distances of the reads, which results in an accuracy
of (7/8+3/4+7/8)/3× 100% = 83.3333%. The lowest edit
distance of r1 and r3 is 1, thus the mapper has an accuracy of
(7/8+7/8)/2×100% = 87.5% with an edit distance 1 in the
all-best category. In the any-best category, the mapper has a
100% accuracy, since each read has at least one mapping for
its lowest edit distance.

We used RazerS3 in its full-sensitive mode to build gold
standards, which contain all possible mapping information for
the simulated reads with an edit distance 5 and the real reads
with edit distance 5, 6, and 7, respectively. For the performance
comparison, we used RazerS3 with its default setting (not full-
sensitive mode) as described in Section V-B.

Table I shows the mapping time and accuracy of read
mappers for 100, 000 simulated reads with an edit distance
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threshold 5. In the accuracy column, total denotes accuracy of
total mappings within the threshold and ED i denotes accuracy
of those mappings with each distinct edit distance i. We ran the
mappers using a single thread and 8 threads, respectively, and
measured the mapping time. We did not include the mapping
time of Masai using 8 threads since it does not support multi-
threading. We omitted the mapping time of Bowtie2 of a single
thread since it could finish only about 10% of 100k reads
in 6 hours. As the simulator generated original positions of
simulated reads, we also measured the recall of each mapper,
which is the fraction of reads correctly reported at the original
positions.

In terms of accuracy, the top three performers were
Hobbes3, Bitmapper, and Hobbes2 with accuracy scores of
99.9999%, 99.9994%, and 99.8573%, respectively. Hobbes3
apparently improved Hobbes2 and returned almost all mapping
positions of reads. Bitmapper also returned most mapping
positions and was slightly worse than Hobbes3. For the recall,
Hobbes3 and Bitmapper could return original positions of all
reads within 5 edit errors, while Hobbes2 missed many original
positions. RazerS3, Bowtie2, and Masai also showed good
performance, but missed many mapping positions for high
edit errors. BWA, Gem, and Yara missed too many mapping
positions to be used as all-mappers. In terms of mapping time,
Gem and Yara were the fastest but they showed poor accuracy.
Among mappers exhibiting high accuracy, Hobbes3 ran the
fastest, followed by Bitmapper.

We also ran Bowtie2, BWA, and Gem in their default
mapping modes (or best mapping modes). We report the results
at the end of Table I with mapper names Bowtie2*, BWA*, and
Gem*. These mappers ran much faster than other mappers but
exhibited very poor mapping results. In particular, they missed
most mapping positions for large edit errors.

Tables II, III, and IV show experimental results on 1
million real reads with edit distance thresholds 5, 6, and
7, respectively. We included the total number of mapped
reads in the third columns of the tables. Bowtie2, BWA, and
RazerS3 were excluded from the experiments as they ran too
slowly compared to the other all-mappers. We also excluded
Bowtie2*, BWA*, and GEM* since they exhibited very poor
accuracy as shown in Table I.

The accuracy of Hobbes3 was the best in all settings.
Hobbes3 found almost all mapping positions and missed only
a small fraction of mappings for high errors when multiple
mappings were found in a verification window. Hobbes3
always returned mapping positions for every mappable read in
all settings. In terms of mapping time, Hobbes3 and Bitmapper
ran the fastest among the mappers - about three to four times
faster than Hobbes2, about two to three times faster than
Masai, up to sixteen times faster than Yara, and about 1.5
times faster than Gem. As we balance between the overhead of
generating candidates and that of verifying candidates, it is not
straightforward to explain the improvement of mapping speed
of Hobbes3 in terms of the number of candidates only. That
is, an optimal set of signatures do not minimize the number
of candidates. Nonetheless, Hobbes3 tends to generate small
number of candidate positions with a reasonable amount of
time. For example, Hobbes3 using 8 threads took 436 seconds
to generate 984, 316, 998 candidates for edit distance 7, while

Hobbes 2 using 8 threads took about 423 seconds to generate
3, 960, 444, 929 candidates for the same edit distance.

Although Bitmapper ran slightly faster than Hobbes3 in
most settings except that of 8 threads with edit distance 7, it
showed poor accuracy than Hobbes3. In particular, Bitmap-
per generated unacceptably poor results with edit distance
6. Bitmapper also returned many incorrect mapping results
that aligned reads across chromosome boundaries. With edit
distance 7, for instance, the number of all mappable reads
is 934, 654, but Bitmapper returned mapping positions for
934, 655 reads. Moreover, Hobbes3 is more scalable than
Bitmapper since multi-threaded Hobbes3 ran faster for larger
edit errors. For instance, it took about 56 minutes for Hobbes3
of 8 threads to map reads with edit distance threshold 8, while
Bitmapper using 8 threads needed 64 minutes for mapping the
reads. For the threshold, we used a 9-gram index of Hobbes3
while an 11-gram index of Bitmapper, because Bitmapper did
not support gram lengths smaller than 11.

Masai exhibited good performance in terms of accuracy
and time, but it does not support multi-threading. Yara, a
successor of Masai, showed the worst performance. Although
we configured Yara as an all-mapper with the --all option,
the mapper missed most mapping positions for high edit errors.
Gem, configured as an all-mapper, ran fast in the experiments
on simulated reads, but ran much slower than other mappers
such as Hobbes, Bitmapper, and Masai on real reads. Gem used
most of the time and memory space in converting its mapping
results into the SAM format. Using 8 threads, Gem was not
able to convert its results into the SAM format, and was killed
with an out-of-memory exception in our experimental setting.

We also ran an experiment on long reads. For 100,000 sim-
ulated reads of length 500 bp with 4% errors (or edit distance
threshold 20), Hobbes3 with 8 threads returned mappings for
all mappable reads in 5 minutes, while Bitmapper, Hobbes2,
and Gem failed to map the reads. RazerS3 with 8 threads
succeeded to map the reads, but it took about 20 minutes.

F. Paired-end Mapping

We performed experiments for paired-end mapping with
an edit distance 5 and the results are summarized in Table V.
In the experiments, we compared five top all-mappers and
excluded those mappers mainly designed to find a few top
mapping positions. Since Masai does not directly support
mapping paired-end reads, we separately ran masai_mapper
for each read file to output results in the Masai’s raw format,
and merged the results using masai_output_pe to produce
mappings in the SAM format. We included the conversion time
in the mapping time of Masai.

TABLE V. RESULTS OF MAPPING 1 MILLION × 2 PAIRED-END READS

OF LENGTH 100 BP AGAINST HG18 (ED 5)

paired mapping time (min:sec) peak
mapper reads 1 thr 8 thrs memory

Hobbes3 866887 21:48 06:06 14.8 GB

Hobbes2 866609 42:08 12:00 15.3 GB

Bitmapper 866892 22:41 06:10 17.5 GB

Masai 840798 49:42 − 17.3 GB

RazerS3 866802 91:59 66:35 17.7 GB
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We observed that Hobbes3 and Bitmapper were the fastest
among all-mappers in both single threaded and multi-threaded
cases. When using a single thread, Hobbes3 was about 2 times
faster than Hobbes2 and Masai, and about 4.5 times faster
than RazerS3. When using 16 threads, Hobbes3 was about 10
times faster than RazerS3. In terms of mapped pairs, Hobbes3
and Bitmappers were apparently better than other mappers.
Although Bitmappers returned slightly more mapped pairs than
Hobbes3, it included incorrectly aligned mapping positions that
cross chromosome boundaries.

VI. CONCLUSIONS

Hobbes3 is a read mapper designed to return all map-
ping positions of a read in a reference sequence. We have
developed Hobbes3 using a technique that generates candidate
mapping positions for a read using variable-length signatures.
We showed that we could generate candidates for variable-
length signatures using a fixed-length q-gram inverted index.
Unlike previous techniques that focus on reducing the number
of candidates only, the proposed technique considers a trade-
off between candidate generation and verification overheads.
We proposed a novel dynamic programming algorithm that
balances the trade-off in an optimal way. Our experiments
showed that Hobbes3 substantially improves the performance
of read mapping in terms of speed and accuracy. Hobbes3 ran
much faster than state-of-the-art all-mappers while returning
almost all possible mapping positions.
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