
End-to-End Machine Learning with Apache AsterixDB
Wail Alkowaileet

University of California Irvine
w.alkowaileet@ics.uci.edu

Sattam Alsubaiee
Center for Complex Engineering
Systems at KACST and MIT

ssubaiee@kacst.edu.sa

Michael J. Carey, Chen Li
University of California Irvine
mjcarey,chenli@ics.uci.edu

Heri Ramampiaro
Norwegian University of Science and

Technology (NTNU)
heri@ntnu.no

Phanwadee Sinthong
University of California Irvine

psinthon@ics.uci.edu

Xikui Wang∗
University of California Irvine

xikuiw@ics.uci.edu

ABSTRACT
Recent developments in machine learning and data science pro-
vide a foundation for extracting underlying information from Big
Data. Unfortunately, current platforms and tools often require data
scientists to glue together and maintain custom-built platforms
consisting of multiple Big Data component technologies. In this
paper, we explain how Apache AsterixDB, an open source Big Data
Management System, can help to reduce the burden involved in us-
ing machine learning algorithms in Big Data analytics. In particular,
we describe how AsterixDB’s built-in support for user-defined func-
tions (UDFs), the availability of UDFs in data ingestion pipelines and
queries, and the provision of machine learning platform and note-
book inter-operation capabilities can together enable data analysts
to more easily create and manage end-to-end analytical dataflows.
ACM Reference Format:
Wail Alkowaileet, Sattam Alsubaiee, Michael J. Carey, Chen Li, Heri Ra-
mampiaro, Phanwadee Sinthong, and Xikui Wang. 2018. End-to-End Ma-
chine Learning with Apache AsterixDB. InDEEM’18: International Workshop
on Data Management for End-to-End Machine Learning, June 15, 2018, Hous-
ton, TX, USA. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3209889.3209894

1 INTRODUCTION
Increasingly our world is being digitized, and there is much to
be learned from its analysis. Data analysis on Big Data is a very
challenging task as it can be very difficult to handle big datasets.
The good news is that recent developments in machine learning
and data science provide solid foundations for extracting informa-
tion from large volumes of data and using it in understanding our
rapidly evolving world. The bad news is that the current platforms
and tools for machine learning, data analysis, and data management
– especially at scale – tend to be disjoint. As a result, data scien-
tists must glue together and maintain custom-built heterogeneous
∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DEEM’18, June 15, 2018, Houston, TX, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5828-6/18/06. . . $15.00
https://doi.org/10.1145/3209889.3209894

platforms involving multiple Big Data components – e.g., HDFS,
Pig, Hive, Spark, TensorFlow, and so on – which requires signifi-
cant effort, introduces ETL delays, and demands computer systems
expertise from analysts who should instead be focused on data
modeling, selection of machine learning techniques, algorithms,
and data exploration.

In order to reduce the expertise and effort levels required for data
scientists to work with Big Data, we need a system that provides
scalability for conducting data analyses on large-scale datasets, ex-
tendability with machine learning libraries, and integrability with
Big Data analytics tools. To move forward towards this goal, we use
Apache AsterixDB [4] and enhance it with data analytics features.
Apache AsterixDB provides support for the scalable storage and
analysis of large volumes of semi-structured data. It offers a flexible
data model to enrich data with outputs from machine learning mod-
els, data feeds for fast data ingestion, and a user-defined function
(UDF) framework for creating customized dataflows with external
libraries. In this paper, we describe how to leverage these features
for supporting end-to-end data analytics with Machine Learning.

The rest of the paper is organized as follows. Section 2 discusses
some existing systems that are widely used within Big Data analyt-
ics, including their features and the difficulties of using them as-is
for end-to-end data analytics. Section 3 introduces the building
blocks that we use to build our end-to-end data analytics plat-
form. Section 4 explains how one can incorporate machine learning
algorithms into AsterixDB using the components introduced in
Section 3. Section 6 summarizes the paper and outlines our plans
for future work.

2 RELATEDWORK
As noted earlier, most of the current approaches to end-to-end data
analytics require gluing together multiple disjoint components.
Here, we discuss some related systems that are used in supporting
machine learning on large-scale datasets.

Redis. Redis [19] is an in-memory, key-value database. It is often
used as a cache and message broker. Redis now provides a redis-ml
package as an extension to enable users to apply machine learning
algorithms on stored data. It supports several popular algorithms, in-
cluding clustering, logistic regression, and linear regression, which
cover many common machine learning tasks. However, it does not
support integrating external libraries, which means that users have

https://doi.org/10.1145/3209889.3209894
https://doi.org/10.1145/3209889.3209894
https://doi.org/10.1145/3209889.3209894

DEEM’18, June 15, 2018, Houston, TX, USA W. Alkowaileet, S. Alsubaiee, M. J. Carey, C. Li, H. Ramampiaro, P. Sinthong and X. Wang

to restrict their data analytics tasks to applying the provided algo-
rithms. It also lacks query capabilities for interactively exploring
data.

Hive. Apache Hive [21] is a data warehouse based on Apache
Hadoop. It provides file-based storage and query support for archived
distributed datasets. Hive provides a UDF interface for users to
add customized data processing and analytics. As Hive depends
on the Hadoop ecosystem, it requires its users to have significant
Hadoop/HDFS expertise.

Spark. Apache Spark [22] is a general-purpose cluster computing
system that provides in-memory parallel computation on a cluster
with scalability and fault tolerance. MLlib [15], which is built on
top of Spark, provides the capability of running machine learning
algorithms on large-scale datasets. Although Spark supports query-
ing and accessing structured data inside a Spark program, it does
not provide data storage and management. It typically works with
HDFS for distributed data processing.

TensorFlow. TensorFlow [2] is a machine learning platform that
provides computation support for various analytics tasks. It utilizes
computing resources across multiple nodes and different computa-
tional devices. TensorFlow is solely a computing platform; similar
to Spark and Hive, it relies on a distributed file system for data
management.

Weka. Weka [1] is an open-source platform written in Java aim-
ing at providing machine learning algorithms for data mining tasks.
It provides supports for regression, classification, clustering, associ-
ation rule mining, and attribute selection. Being merely a machine
learning algorithm suite, it needs additional runtime and data man-
agement platforms to be able to work in a distributed environment.

MonetDB. MonetDB [16] is an open-source columnar database
management system. It was designed for data warehouse appli-
cations and offers significant speedups through its storage and
query execution models. To address users familiar with R, MonetDB
provides embedded R support to enable native R script execution
through SQL functions. While it excels at in-memory execution,
MonetDB has limited scale-out capabilities that therefore limit its
usefulness for Big Data use cases.

MADlib. Apache MADlib [9] introduced an innovative approach
to implementing machine learning, data mining, and statistical al-
gorithms using SQL running on a database engine. It minimizes the
cost of data movement for import/export and utilizes the parallelism
provided by modern parallel database engines. This library provides
many popular algorithms that can be used to build a customized
analytics dataflow. To use these implementations, users need to
adapt their current analytical pipelines to the MADlib library.

Each of the systems mentioned above provides some support for
utilizing machine learning algorithms in Big Data analytics. Some
systems provide a limited number of machine learning models
(Hive, Redis), while others rely on other systems to work against
large-scale datasets (TensorFlow, Spark, Weka). MADlib focuses on
enablingmachine learning on database engines, but it requires users
to re-implement their pipelines. All of them demand extra work
from users who may have limited expertise in computer systems to
solve the end-to-end data analytics puzzle.

3 OUR BUILDING BLOCKS
To build an end-to-end data analytics system, one needs a storage
engine that manages distributed data, a runtime execution engine
that supports distributed computation, a user-friendly interface
for accessing the data, and an extensible framework that enables
the use of external libraries. Instead of starting from scratch, we
have chosen to enhance Apache AsterixDB with machine learning
libraries/systems for data analytics using its extensibility features.

3.1 Apache AsterixDB
Apache AsterixDB is an open source Big Data Management System
that provides distributed data management for large-scale semi-
structured data. Here we focus on several important features that
can be used in data analytics.

3.1.1 User Model. Analyzing data in the current digitized world
requires a system that can handle different data formats and pro-
vide support for various data manipulation operations. To meet
this requirement, an important feature of AsterixDB is its flexible
data model. Before storing data into AsterixDB, a user can create a
Datatype, which describes known aspects of the data being stored,
and a Dataset, which is a collection of records of a Datatype. Aster-
ixDB allows a Datatype to be “open”, in that the description of the
data does not need to be complete prior to storing it. This means
that a user can insert data records with additional fields, such as
semantic annotations, into a dataset directly. For example, as shown
in Fig. 1, only “id” and “text” are specified at creation time, but the
inserted records each have an additional field, i.e., “sentiment” and
“entities”, respectively. The data model is a superset of JSON and
supports complex objects with nesting and collections. This gives
the user more flexibility in data analytics applications as compared
with other systems. In addition, AsterixDB provides SQL++ [17]
as the query language that allows data scientists to query their
datasets without scripting or low-level programmings.

-- Create an open datatype

CREATE TYPE Tweet {

id: int64 ,

text: string

};

-- Create a dataset with a given datatype

CREATE DATASET Tweets(Tweet);

-- Insert records with additional attributes

-- into a dataset.

INSERT INTO Tweets

([{"id":1,"text":"This is a happy tweet!",

"sentiment":"Positive"},

{ "id":2, "text": "We are located in Irvine CA,

30 mins from Disneyland !!",

"entities": ["Disneyland", "Irvine", "CA"]}]);

Figure 1: Insertion of records with additional attributes into
a dataset.

3.1.2 Data Feeds. In many Big Data applications, data are gener-
ated continuously and at high speed. How to capture “fast moving”

End-to-End Machine Learning with Apache AsterixDB DEEM’18, June 15, 2018, Houston, TX, USA

data and persist it in a database is an important problem that has
to be solved when building Big Data Analytics applications. Aster-
ixDB provides “data feeds” for ingesting/parsing/storing data from
external data sources with scalability and fault tolerance [8]. A user
can ingest data from files, a prescribed socket, Twitter, RSS feeds,
and other Internet sources by creating or using feed adapters and
connecting them to AsterixDB datasets. By making connections
between a feed adapter and a dataset, data records ingested from
the external data source will be stored in this dataset directly. As
an example, Fig. 2 shows the sequence of DDL statements needed
to create a Twitter feed and begin collecting live tweets in the
previously defined dataset.

CREATE FEED TwitterFeed with {

"adapter -name" : "push_twitter",

"type -name" : "Tweet",

"format" : "twitter -status",

"consumer.key" : "***",

"access.token" : "***",

"access.token.secret" : "***"

};

CONNECT FEED TwitterFeed to Tweets;

START FEED TwitterFeed;

Figure 2: Create a Twitter feed to collect tweets.

3.1.3 External User Defined Functions. There are use cases in
which a user wants to perform complex operations on stored data
that cannot be neatly expressed in a declarative query language.
Like various other RDBMSs and Big Data platforms [20], AsterixDB
provides an external user-defined function (external UDF) frame-
work that enables users to plug in their own functions written in
popular programming languages (e.g., Java and Python). By im-
plementing the function interface, a user can read and manipulate
records using external UDFs. Once defined, UDFs can be used like
native functions in queries. For more complex processing tasks, like
running machine learning models against collections of records,
users can leverage functions from external machine learning li-
braries in external UDFs as well.

To illustrate, assume a user wants to implement a simple func-
tion, called “getNaiveSentiment”, that extracts the sentiment of
an input sentence based on the aggregated sentiment score of each
word in the sentence. To create his/her function with AsterixDB, the
user implements a pre-defined external UDF interface and a factory
class that is used for creating function instances at runtime. Then,
to deploy the function, he/she creates a configuration file, as shown
in Fig. 3, which specifies metadata information about the function,
including the expected parameter type for the function, the output
type, and the name to be used in queries for invoking the function1.
As an example of how a user can invoke “getNaiveSentiment” in
a query, consider the sample query in Fig. 4. Here, the query reads
an input list of sentences, processes them using a UDF, and returns
a list of records containing both the text and the corresponding
sentiments.

The evaluation process for UDF consists of the following three
stages: initialization, evaluation, and deinitialization, as shown in
1Notice that the function name (“getNaiveSentiment”) used in queries can be different
from the implementation name (“NaiveSentimentExtractor”).

<libraryFunction >

<function_type >SCALAR </function_type >

<name>getNaiveSentiment </name>

<arguments >ASTRING </arguments >

<return_type >TextSentimentType </return_type >

<definition >org.apache.asterix.external.library.

NaiveSentimentExtractorFactory

</definition >

</libraryFunction >

Figure 3: A sample function description.

/* We assume the following datatype is created.

CREATE TYPE TextSentimentType {

text: string ,

sentiment: string

};

*/

SELECT VALUE simplelib#getNaiveSentiment(text) FROM

["DEEM is the best workshop.",

"The authors are frustrated.",

"The best author is very sad.",

"This sentence is neutral."] as text;

/* Result:

{ "text": "DEEM is the best workshop.",

"sentiment ": "Positive" }

{ "text": "The authors are frustrated .",

"sentiment ": "Negative" }

{ "text": "The best author is very sad.",

"sentiment ": "Positive" }

{ "text": "This sentence is neutral.",

"sentiment ": "Neutral" }

*/

Figure 4: A sample query that calls an external UDF.

Fig. 5. When an external UDF is invoked for the first time within
a query, the “initialize” method is executed for all necessary
initialization, such as loading resource files. In the example, the
initialization method first reads two lists of positive and negative
words, respectively, which are used to map words to sentiment
scores. The “evaluate” method processes an input value, com-
putes the aggregated sentiment scores, and returns the result. The
“deinitialze” method is executed to, e.g., do necessary clean-ups
at system shutdown time.

3.2 Machine Learning Platforms
With the external UDF framework introduced in the previous sec-
tion, users can integrate models from their favorite machine learn-
ing libraries into AsterixDB for complex data analytics tasks. Ma-
chine learning libraries come with a variety of usability, scalability,
and extensibility characteristics. Examples include Weka [1], Spark
MLLib [15], Caffe [12], Scikit-Learn [18], and TensorFlow [2]. In
this paper, we focus on how AsterixDB can be used to facilitate typ-
ical machine learning tasks in both lab-scale experiments for model

DEEM’18, June 15, 2018, Houston, TX, USA W. Alkowaileet, S. Alsubaiee, M. J. Carey, C. Li, H. Ramampiaro, P. Sinthong and X. Wang

Negative Words

…
fruitlessly
frustrate
frustrated
…

Postive Words

…
benifits
best
best-known
…

initialize(…)

evaluate(…)

deinitialize(…)

Initialization

Function Instance

initialize(…)

evaluate(…)

deinitialize(…)

Deinitialization

Function Instance

evaluate(…)

deinitialize(…)

initialize(…)

Evaluation

Function Instance

Resource Files simplelib#getNaiveSentiment("DEEM is the
best workshop")

{ "text": "DEEM is the best workshop",
"sentiment": "Positive" }

Figure 5: The lifecycle of the “getNaiveSentiment” UDF.

validation and large-scale data analytics for real-world applications
using Weka, Spark MLlib, and scikit-learn. We refer the reader to
Section 2 for the highlights of the first two platforms.

4 MACHINE LEARNING IN ASTERIXDB
4.1 The Lifecycle of Big Data Analytics
A common data analytics workflow generally includes the following
three main tasks [7]:
(1) Collecting and loading data;
(2) Training models using machine learning algorithms; and
(3) Making predictions with the trained models.
As noted earlier, AsterixDB provides data feeds for fast data inges-
tion from different sources (i.e., task (1)). In this section, we discuss
how AsterixDB utilizes components from the building blocks in
Section 3 to support the other two tasks. For illustration purposes,
we will use records from the dataset Tweets in Fig. 6 throughout
this section.

4.2 Feature Extraction with AsterixDB
AsterixDB provides different ways of serving data to different ma-
chine learning platforms for feature extraction. We discuss the
following two cases depending on the size of the dataset that a user
wants to work with. For a small training dataset, a user can utilize
the AsterixDB query service to export the stored data. AsterixDB
provides different formats for returning query results, including
both JSON and CSV, that can be fed into a machine learning plat-
form like Weka directly. For big training datasets, we provide a
Spark-connector [3] that can move data in parallel from AsterixDB
to Spark in order to train machine learning models efficiently.

4.2.1 Small training datasets. When the dataset is small, a user
can query data from AsterixDB and feed the result into a separate
feature extraction program, or they can embed feature extraction
code into a UDF to query and export data features directly. Here
we use Weka Explorer as an example to train and build classifica-
tion models using features exported from AsterixDB. To illustrate,
consider the query and the corresponding result in Fig. 7. In this
example, we apply a pre-coded UDF called ‘‘extractFeatures’’
to extract some pre-specified simple counting features, including
“terms” (the number of unique terms), “topics” (number of hash-
tags), “tags” (number of mentions), “links” (number of URLs), and
“sentiment_rate” (number of sentiment-related words).

The main advantage of this approach is that a Weka-familiar
user can use a desired sample of the data stored in the database
to extract features of interest, export the result to a JSON or CSV
file, and import the features into Weka in the usual Weka manner
for analysis or experimentation. Further, a more advanced user can
use the UDF framework to implement his/her own UDF to extract
more complex features (e.g., nested or non-numerical features),
thus making the feature extraction UDF a useful part of a complete
feature engineering process.

4.2.2 Large training datasets. For large datasets, AsterixDB can
be coupled with a scalable machine learning platform such as
Apache Spark. The AsterixDB-Spark connector [3] provides a con-
nection between the two distributed systems and has the ability to
exploit data locality to minimize the data transfer cost whenever
possible. This coupling allows data scientists to leverage the capa-
bilities of both systems to answer a specific question or to test a
hypothesis efficiently. For instance, a user can fetch only a desired
subset of the data that satisfies certain spatial, temporal and/or
textual predicates using the indexes provided by AsterixDB and
stream the query results into Spark to perform a complex analysis
or to train a machine learning model.

To illustrate, we consider a case where we wish to analyze a large
volume of tweets to determine the discussion topics in a specific
geographic region of interest. To get the tweets that have been
posted in the region, a spatial query can be submitted to AsterixDB
from Spark using the AsterixDB-Spark connector to get the result
into Spark for analysis as shown in Fig. 8. 3 The Spark variable
‘‘df’’ is a Spark DataFrame that contains the query results, which
can be used for further processing with Spark’s built-in algorithms.
In this case, suppose we want to train a topic model with the stored
tweets in AsterixDB using the Latent Dirichlet Allocation (LDA)
algorithm[6]. As a first step, we can prepare the tweets (using the
function ‘‘preprocess’’ in Fig. 8) by removing stopwords and
computing term frequencies. Then, we can set the LDA parameters
and run the algorithm to obtain the topic model. The trained model
is stored in the variable ‘‘ldamodel’’, which can be used in the
current Spark program or be exported to a local file. Note that all
of the steps can be done in the data scientist’s familiar Spark world.
3The AsterixDB-Spark connector allows Spark worker nodes to read query result
partitions from AsterixDB nodes in parallel. When AsterixDB and Spark worker nodes
are co-located the connector tries to exploit data locality to minimize data movement.

End-to-End Machine Learning with Apache AsterixDB DEEM’18, June 15, 2018, Houston, TX, USA

{ "id":1, "text": "I'm so happy to be here!", "geo_coordinates": point("47.44,80.65")}
{ "id":2, "text": "We are located in Irvine CA, 30 mins from Disneyland!!", "geo_coordinates": point("36.50,60.65"),
"city":"Irvine, CA"}
{ "id":3, "text": "Honored to welcome Georgia Prime Minister, Giorgi Kvirikashvili to the @WhiteHouse today with @VP Mike Pence.",
"geo_coordinates": point("31.24,98.61"), "city":"Washington, DC"}
{ "id": 4, "text": "getting ready to test out some burger receipes this weekend. Bobby Flay has some great receipes to try. Thanks
Bobby.", "geo_coordinates": point("26.42,42.13"), "city":"Phoenix, AZ"}
{ "id": 5, "text": "i lam so in love with Bobby Flay... he is my favorite. RT @terrysimpson: @bflay you need a place in Phoenix. We
have great peppers here!", "geo_coordinates": point("12.44,42.66"), "city":"Phoenix, AZ"}
{ "id": 6, "text": "using Linux and loving it - so much nicer than windows... Looking forward to using the wysiwyg latex editor!",
"geo_coordinates": point("44.42,86.61"), "city":"Irvine, CA"}
{ "id": 7, "text": "Reading the tweets coming out of this accident... The whole thing is terrifying and incredibly sad...",
"geo_coordinates": point("34.44,86.65"), "city":"Los Angeles, CA"}

Figure 6: Contents of the sample "Tweets" dataset.

SELECT t.id as id ,

wekalib#extractFeatures(t) as features

FROM Tweets t;

/* Result:

{ "id": 1, "features ": { "terms": 2.0, "topics ": 0.0,

"tags": 0.0, "links": 0.0, "sentiment_rate ": 1.0,

"class": "?" } }

{ "id": 2, "features ": { "terms": 6.0, "topics ": 0.0,

"tags": 0.0, "links": 0.0, "sentiment_rate ": 0.0,

"class": "?" } }

{ "id": 3, "features ": { "terms": 12.0, "topics ": 0.0,

"tags": 2.0, "links": 0.0, "sentiment_rate ": 2.0,

"class": "?" } }

...

*/

Figure 7: Example extraction of features from the sample
tweets using a UDF.2

4.3 Bringing Machine Learning to AsterixDB
With the external UDF framework introduced in Section 3, Aster-
ixDB can utilize machine learning libraries for data analytics on
large-scale datasets. Depending on the application needs, a user can
either use a specialized library for specific tasks, or they can use
more general tools such as Weka and Spark with trained models.

4.3.1 External UDFs from a specialized machine learning library.
Some libraries are designed to perform analytical tasks within spe-
cific application contexts. AsterixDB enables a user to integrate
such libraries by using external UDFs so that they can be utilized
for data analytics. Assume that we want to extract the sentiment
of an incoming tweet based on its text content. One possible ap-
proach is to use the Stanford CoreNLP library [14], which focuses
on text annotation and semantic analytics, via an external UDF. We
can utilize its sentiment analysis algorithm to create the desired
AsterixDB UDF as illustrated in Fig. 9. For simplicity, we segment
the tweet text into sentences and use the sentiment for the longest
sentence as the primary sentiment for the tweet.

Like our example in Section 3, the configuration for the sen-
timent analysis external UDF is shown in Fig. 10. Here, we de-
fine the function name to be getSentiment. We specify Tweet
as the input record type for describing Tweets from Twitter and
TweetSentimentType as the result data type for annotated senti-
ment information. A sample SQL++ query for invoking sentiment
analysis on all of the records in our sample dataset is shown in
Fig. 11. Similarly, we can utilize other capabilities from the CoreNLP

...

// load data into DataFrame

val df = sqlContext.sqlpp("""

SELECT t.text , t.city

FROM Tweets t

WHERE spatial_intersect(

create_rectangle(

create_point (-107.27, 33.06) ,

create_point (-89.1, 38.9)) ,

t.geo_coordinates)

""")

// remove stop words and compute term frequency

val documents = preprocess(df)

// initialize the LDA algorithm

val lda = new LDA()

// set the running parameters for the LDA

lda.setOptimizer(new EMLDAOptimizer)

.setK (14)

.setMaxIterations (1000)

val ldamodel = lda.run(documents)

Figure 8: Get tweets from AsterixDB into Spark as a
DataFrame and run the LDA algorithm on the resulting data
using Spark MLlib.

library with external UDFs to extract more semantic information
from Twitter text. Fig. 12 shows two additional examples that ex-
tract locations and names from tweets.

4.3.2 External UDFs from general machine learning libraries. In
situations where a user cannot find an appropriate specialized li-
brary or wants to use customized models, AsterixDB provides sup-
port for incorporating customized models via external UDFs with
general machine learning libraries. A user can pick up a provided
general machine learning algorithm implementation and configure
it with his/her own models depending on the applications. Here
we use Weka as an example to show how we could extract similar
sentiment information from Twitter text with a general “Random
Forest” classifier and a trained Weka model file.
3Here, "?" in a class field means that the class of the record is to be set by the classifier
later.

DEEM’18, June 15, 2018, Houston, TX, USA W. Alkowaileet, S. Alsubaiee, M. J. Carey, C. Li, H. Ramampiaro, P. Sinthong and X. Wang

// Create the Stanford CoreNLP pipeline in initialize (...).

...

props.setProperty("annotators", "tokenize , ssplit , parse , sentiment");

StanfordCoreNLP pipeline = new StanfordCoreNLP(props);

...

// Process the incoming tweet in evaluate (...).

...

String tweet = ((JString) inputRecord.getValueByName("text")). getValue ();

if (tweet != null && tweet.length () > 0) {

CoreMap longestSentence = getLongestSentence(pipeline.process(tweet));

Tree annotatedTree = longestSentence.get(SentimentCoreAnnotations.SentimentAnnotatedTree.class);
mainSentiment = RNNCoreAnnotations.getPredictedClass(annotatedTree);

}

...

Figure 9: A wrapper code snippet for utilizing the Stanford CoreNLP library in a UDF.

<libraryFunction >

<function_type >SCALAR </function_type >

<name>getSentiment </name>

<arguments >Tweet</arguments >

<return_type >TweetSentimentType </return_type >

<definition >org.apache.asterix.external.

library.SentimentAnalysisFactory </definition >

</libraryFunction >

Figure 10: A sample configuration for a sentiment extraction
UDF.

LET item=snlplib#getSentiment(t)

SELECT item.id , item.sentiment

FROM Tweets t;

/* Result:

{ "id": 1, "sentiment ": "Very Positive" }

{ "id": 2, "sentiment ": "Negative" }

{ "id": 3, "sentiment ": "Negative" }

{ "id": 4, "sentiment ": "Negative" }

{ "id": 5, "sentiment ": "Positive" }

{ "id": 6, "sentiment ": "Positive" }

{ "id": 7, "sentiment ": "Negative" }

*/

Figure 11: Invoking an external UDF using a query.

As discussed in Section 3, AsterixDB allows UDFs to load re-
source files during the function initialization. A UDF that imple-
ments a general algorithm can be implemented once and then
adapted to different applications by loading application-specific
model files. For example, the same UDF implementing the “Random
Forest” algorithm can be used to apply multiple different trained
models by specifying the needed model files in the UDF config-
uration file in Fig. 13. Thus, a user can use the same underlying
UDF implementation for sentiment analysis, spam detection, and
other analytics tasks depending on the application requirements
without reprogramming. Together with the feature extraction UDF
discussed in Section 4.2, we can realize a data analytics cycle with

SELECT snlplib#getLocation(t)

FROM Tweets t

WHERE t.id = 2;

/* Result:

{ locations: ["Disneyland",

"Irvine", "CA"] }

*/

SELECT snlplib#getName(t)

FROM tweets t

WHERE t.id = 3;

/* Result:

{ names: ["Kvirikashvili", "Mike",

"Giorgi", "Pence"] }

*/

Figure 12: ExternalUDFs addingmore semantic information
to a tweet record.

Weka and AsterixDB as dictated in Fig. 13. Note that while this fig-
ure shows the coupling of the configured UDF with a feed adapter,
this UDF can be invoked in queries as well. To compare with the
sentiment analysis result in Fig. 11, the corresponding result for
the sample dataset using Weka is shown in Fig. 14.

Choosing an external UDF with a general machine learning
library offers more flexibility as compared to using prepackaged
specialized libraries, allowing users to make a trade-off between
algorithm/model complexity and processing costs. By leveraging
the UDF framework, users are able to invoke machine learning
models on feeds (streaming input data) and on stored data as well
as using them to extract features from a query-filtered data subset.

4.3.3 Applying Native Spark Models in AsterixDB. To complete
the data analytics cycle with the Spark trained models from Sec-
tion 4.2, we also support executing native Spark model in AsterixDB.
This feature is still under active development, but we summarize
it briefly here. Our aim is for the users to be able to run native
Spark models on an AsterixDB cluster. Spark allows a user to ex-
port a trained machine learning model or workflow pipeline (a
series of models) into local files. The exported file contains nec-
essary configurations that can be used for reconstructing Spark
models at runtime. A UDF can read this configuration file during

End-to-End Machine Learning with Apache AsterixDB DEEM’18, June 15, 2018, Houston, TX, USA

FeedAdapter
Raw Data

AsterixDB UDF

UDF1

UDF2

UDF3

UDFn

Export

WEKA
Import

Data Import

Classifier Model
Builder / Training

Classification
Model Export

CSV/JSON file

Model and feature
header file

Records with
Semantics

...

...
<libraryFunction><!-- UDF2 -->
 <name>classifyTweetSentiment</name>
 <function_type>SCALAR</function_type>
 <arguments>Tweet</arguments>
 <return_type>STRING</return_type>
 <definition>org.apache.asterix.external.library.
 WekaRandomForestFactory</definition>
 <init_parameters>SENTIMENT_MODEL_PATH_1;
 SENTIMENT_MODEL_PATH_2</init_parameters>
</libraryFunction>
<libraryFunction><!-- UDF3 -->
 <name>classifySpamTweet</name>
 <function_type>SCALAR</function_type>
 <arguments>Tweet</arguments>
 <return_type>STRING</return_type>
 <definition>org.apache.asterix.external.library.
 WekaRandomForestFactory</definition>
 <init_parameters>SPAM_MODEL_PATH_1;
 SPAM_MODEL_PATH_2</init_parameters>
</libraryFunction>
 ...

Configuration

{ "id": 1, "sentiment": "Positive" }
{ "id": 2, "sentiment": "Negative" }
{ "id": 3, "sentiment": "Positive" }
…

Parameters

Data Export Query

AsterixDB Query Service
Raw Data

 Feature
Extraction UDF

Figure 13: Data analytics cycle with Weka and AsterixDB.

SELECT t.id AS id, wekalib#classifyTweetSentiment(t)

AS sentiment FROM Tweets t;

/* Result:

{ "id": 1, "sentiment ": "Positive" }

{ "id": 2, "sentiment ": "Negative" }

{ "id": 3, "sentiment ": "Positive" }

{ "id": 4, "sentiment ": "Positive" }

{ "id": 5, "sentiment ": "Positive" }

{ "id": 6, "sentiment ": "Positive" }

{ "id": 7, "sentiment ": "Negative" }

*/

Figure 14: Example of sentiment classification with a Weka-
based UDF.

initialization and rebuild the workflow for per-item evaluation.
By implementing these interfaces between AsterixDB and Spark,
we enable evaluating native Spark models in AsterixDB feeds and
queries in parallel.

4.3.4 Applying Scikit-Learn Models in AsterixDB. In addition
to Weka and Spark MLlib, we also support applying Scikit-Learn
trained models as a UDF in the same fashion as that of execut-
ing native Spark models. We offer an ability to call a serializable
Scikit-Learn model/pipline in AsterixDB. This feature is imple-
mented using a third-party library called Jep [10], which embeds
CPython in Java through JNI. It enables communication between
AsterixDB’s Java-centric system and Scikit-Learn’s Python models.
Python users can easily load in their data, train an ML model, and
then apply it seamlessly using AsterixDB and predefined UDFs. To
simulate a complete data analytics pipeline, we first train a sen-
timent classifier using dataset from UC Irvine Machine Learning
Repository[13] containing 3000 labeled sentences from Yelp, IMDB,
and Amazon reviews. The dataset is labeled using scores of 1 (for
positive) and 0 (for negative). A sample code shown in Fig. 15 illus-
trates how to export the trained pipeline as an on-disk file called

“sentiment_pipeline”. Second, to apply this model on an incoming

Figure 15: Sample code to export a Scikit-Learn trained
model.

feed or to a large dataset distributed across multiple nodes, users
only have to edit the UDF configuration file (Fig. 16) to include
the path to the previously exported model. After updating the con-
figuration file and relaunching the AsterixDB instance, the model
is accessible as a function call. Fig. 17 shows a standard Python’s
URL-handling module that calls our HTTP API and loads the data
into pandas DataFrame. Finally, we present a Jupyter notebook
(Fig. 18) showing sample queries applying the sentiment function
to a large Twitter dataset. The notebook includes bar graphs of
sentiment scores on Tweet sentences mentioning three 2016 US
presidential candidates.

<libraryFunction >

<function_type >SCALAR </function_type >

<name>getSentiment </name>

<arguments >ASTRING </arguments >

<return_type >AINT32 </return_type >

<definition >ScikitLearnSentimentFactory </definition >

<init_parameters >/home/user/sentiment_pipeline

</init_parameters >

</libraryFunction >

Figure 16: A sample configuration for a Scikit-Learn Senti-
ment UDF.

DEEM’18, June 15, 2018, Houston, TX, USA W. Alkowaileet, S. Alsubaiee, M. J. Carey, C. Li, H. Ramampiaro, P. Sinthong and X. Wang

Figure 17:A function to send a SQL++query to theAsterixDB
HTTP API.

4.4 Utilizing Machine Learning in AsterixDB
As we have discussed, depending on the users’ preferences and
analytics requirements, an external UDF for data analysis can be
placed at different points in the data analytics pipeline. For a data-
enriching use case, a user may want the analytics to be applied
upon data arrival and then to be able to query data annotated with
the enriched information at query time. For an ad-hoc analysis use
case, a user may just want to apply the analytics function at runtime
together with other query predicates and expressions. AsterixDB
provides mechanics for supporting data analytics in both use cases.

To evaluate functions upon data arrival, the user can attach
the analytic function to a feed and have AsterixDB evaluate it
during the ingestion process. Fig. 19 shows an example of adding
the sentiment analysis function to a feed adapter (“localfs”) for
incrementally loading data from the local file system. By attaching
the function to the feed, all ingested records will be processed by
the attached function as they enter the database. In this example,
all incoming tweets will be annotated with a sentiment based on
their text.

To evaluate such analytical UDFs at query time, users may in-
clude function calls in their queries to apply them to the data records
directly. An example is shown in Fig. 20. Functions can be applied
to any subset of records with proper predicates, and the result can
be returned to either the query interface or another dataset. Since
the function evaluation becomes part of the query execution, the
overall execution time will be affected by the choice of machine
learning algorithms and implementation libraries.

4.5 A Data Scientist Sandbox
To further alleviate the effort of working with multiple data sources
and data engines for data scientists, the notebook interface has
come into play for many data analytics platforms. It helps data
scientists become more productive by providing a unified interface
for organizing and executing codes and visualizing and exporting
results without referring to each low-level system details. Apache
Zeppelin [5] is one of the widely used notebook environments; it
is a collaborative, web-based notebook with built-in support for
Python, Scala, and SQL as well as many types of data visualizations.
Internally, Zeppelin uses an Interpreter to manage different lan-
guages and data-processing engines. An advanced Zeppelin user is
able to add support for additional languages by implementing its
Interpreter interface and can extend the visualization library by
adding new charts and graphs.

We have extended Zeppelin for AsterixDB by adding an Aster-
ixDB SQL++ interpreter. As shown on the left-hand side of Fig. 21,
a Zepplin user can formulate a SQL++ query using the AsterixDB

interpreter and see the resulting data using a Zepplin visualization.
Alternatively, he/she can invoke the LDA algorithm from Spark’s
MLlib to explore the topics of the data returned by the query using
the same Zeppelin interface (as shown on the right-hand side of the
figure). The query’s results can also be exported to other analytics
tools for further analysis.

5 ILLUSTRATIVE EXPERIMENTS
In this section, we demonstrate experimentally the benefit of using
AsterixDB for end-to-end machine learning based data analytics.
These experiments aim to show the speed-up and scale-out per-
formance of the system for computing-intensive analytical tasks.
Following the social media theme, we created a feed pipeline using
a socket adapter that receives data from a external data source. A
sentiment analysis UDF was attached to the feed pipeline to anno-
tate the incoming records. We use a socket client to push data into
this pipeline to measure the overall time that the system spends on
processing the incoming data.

5.1 Configurations
Cluster: The experiments were conducted on a 8-node cluster
with a Gigabit Ethernet switch. Each node had a Dual-Core AMD
Opteron Processor 2212 2.0GHz, 8GB of RAM, and a 900GB hard
disk.Data:We used an offline synthetic tweet generator to generate
the data. The size of each generated tweet was about 300bytes,
which contained id, timestamp, language, message_text, etc. The
sentiment analysis was based on the “message_text” field. Library:
The Standford NLP library was used for extracting sentiment out of
the incoming records. Part of our UDF implementation was shown
in Fig. 9. With the hardware used here, a single thread sentiment
analysis UDF with StandfordNLP can process about 6 records per
second.Measurements:We measured the execution time that the
system spent on processing all incoming data, in seconds. Also,
we kept track of the aggregated time that each processor spent on
processing the records. We compared the per-core evaluation time
with the execution time to visualize the system overhead.

5.2 Scale-out Experiment
In this experiment, we investigated whether the system scales with
the growing size of the cluster and input workload. We started
with 2 nodes processing 160, 000 records and increased that by 2,
up to 8 nodes processing 640, 000 records. Fig. 23 plots the overall
execution time and per core evaluation time against the number of
nodes in the cluster. As indicated in the figure, the system shows
good scale-out performance. The system overhead increased a bit as
the size of cluster grew, but the margin between the execution time
and the per-core evaluation time was relatively small compared to
the execution time.

5.3 Speed-up Experiment
In this experiment, we looked at how the system speed-up with a
fixed amount of workload and an increasing cluster size. We fed
the system with 400, 000 records and measured the execution time
on 2, 4, 6, and 8 nodes. The result shows that the system speed up
accordingly with more nodes joining the evaluation.

End-to-End Machine Learning with Apache AsterixDB DEEM’18, June 15, 2018, Houston, TX, USA

Figure 18: A sample Jupyter notebook that calls a Scikit-Learn trained model through HTTP API.

CREATE FUNCTION annotation(t) {

object_merge ({"sentiment":

snlplib#getSentimentScore(t.text)}, t)};

CREATE FEED TwitterFileFeed USING localfs

(("type -name"="Tweet"),

("path"="127.0.0.1:/// PATH_TO_THE_DATA_FILE"),

("format"="adm"));

CONNECT FEED TwitterFileFeed TO DATASET

Tweets apply function annotation;

Figure 19: Adding an external UDF to a feed.

SELECT snlplib#getSentiment(t) FROM Tweets t

WHERE t.id > 2;

Figure 20: Evaluating an external UDF on-the-fly.

6 CONCLUSION
In this paper, we have explained how machine learning can be used
in conjunction with Apache AsterixDB for Big Data analytics. We
introduced the data model, user-defined functions, and data feeds
in AsterixDB, and explained how they can be used together with
off-the-shelf machine learning libraries to provide a full end-to-end
analytic experience for data analysts using their preferred machine
learning tools. We also explained how to export data from Aster-
ixDB for machine learning model training using SQL++ with its
query service or Spark connector, and discussed how to train mod-
els using Weka, Spark MLlib, and scikit-learn. For applying models
for data analytics, we further discussed how to extract specific in-
formation using a specialized library, e.g., Stanford CoreNLP, or to

use general libraries, e.g., Weka and Spark, with trained model files.
With this AsterixDB support for the loading-training-prediction
life cycle in data analytics, we can provide data analysts with an in-
tegrated distributed Big Data analytics platform with customizable
dataflows.

Going forward, we plan to further extend the AsterixDB support
for end-to-end machine learning data analytics with the following
features:

Visualization of Semantic Data. Cloudberry [11] is a distributed
analytics middleware solution built on top of AsterixDB. It pro-
vides interactive data analysis on temporal, spatial, and textual
dimensions. To extend its ability in visualizing data, we plan to
integrate data analysis via UDFs into its query interface. This im-
provement will make it possible to visualize things such as the
sentiment distribution of tweets about certain topics in the U.S.

Integration with Advanced Machine Learning Architectures. Mod-
ern machine learning libraries are provided in different program-
ming languages, e.g., Python (TensorFlow), Scala (Spark MLlib), and
C++ (Shogun), as well as on various computational devices, such as
multi-core, GPU, and TPU hardware. We want to add support for
libraries from additional languages and to execute them efficiently
on different computing resources.

Feed and Query Optimization with Analytic Functions. Due to the
computational complexity of analytic functions, having functions
in a dataflow can slow down the whole pipeline and introduce
system bottlenecks, either on the ingestion side or query-evaluation
side. We plan to study how to incorporate further parallelism for
expensive function evaluation in the ingestion pipeline and how to
best optimize queries containing such expensive functions.

DEEM’18, June 15, 2018, Houston, TX, USA W. Alkowaileet, S. Alsubaiee, M. J. Carey, C. Li, H. Ramampiaro, P. Sinthong and X. Wang

Figure 21: Using Apache Zeppelin to run a SQL++ query on AsterixDB and Spark using Scala.

2 3 4 5 6 7 8
Number of Nodes

0

500

1000

1500

2000

2500

3000

3500

4000

 T
im

e
 (

s
)

Execution Time

Per-core Evaluation Time

Figure 22: Scale-out experiment with 2, 4, 6, 8 nodes process-
ing 160k , 320k , 480k , and 640k records respectively.

2 3 4 5 6 7 8
Number of Nodes

0

2000

4000

6000

8000

10000

 T
im

e
 (

s
)

Execution Time

Per-core Evaluation Time

Figure 23: Speed-up experiment with 400, 000 records on
2, 4, 6, 8 nodes.

ACKNOWLEDGMENTS
The work reported in this paper was supported in part by NSF CNS
award 1305430.

REFERENCES
[1] Appendix b - the WEKA workbench. In I. H. Witten, E. Frank, M. A. Hall, and

C. J. Pal, editors, Data Mining: Practical machine learning tools and techniques,
pages 553–571. Morgan Kaufmann, fourth edition edition, 2017.

[2] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, et al. Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016.

[3] W. Y. Alkowaileet, S. Alsubaiee, M. J. Carey, T. Westmann, and Y. Bu. Large-
scale complex analytics on semi-structured datasets using AsterixDB and Spark.
Proceedings of the VLDB Endowment, 9(13):1585–1588, 2016.

[4] S. Alsubaiee, Y. Altowim, H. Altwaijry, A. Behm, V. Borkar, Y. Bu, M. Carey,
I. Cetindil, M. Cheelangi, K. Faraaz, et al. AsterixDB: A scalable, open source
BDMS. Proceedings of the VLDB Endowment, 7(14):1905–1916, 2014.

[5] Apache Zeppelin. http://zeppelin.apache.org, 2013.
[6] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. Journal of

machine Learning research, 3(Jan):993–1022, 2003.
[7] D. Donoho. 50 years of Data Science. In Princeton NJ, Tukey Centennial Workshop,

2015.
[8] R. Grover and M. J. Carey. Data ingestion in AsterixDB. In Proceedings of the 18th

International Conference on Extending Database Technology (EDBT 2015), pages
605–616, 2015.

[9] J. M. Hellerstein, C. Ré, F. Schoppmann, D. Z. Wang, E. Fratkin, A. Gorajek, K. S.
Ng, C. Welton, X. Feng, K. Li, et al. The MADlib analytics library: or MAD skills,
the SQL. Proceedings of the VLDB Endowment, 5(12):1700–1711, 2012.

[10] Jep. Java Embedded Python. https://github.com/ninia/jep, 2013.
[11] J. Jia, C. Li, X. Zhang, C. Li, M. J. Carey, et al. Towards interactive analytics and

visualization on one billion tweets. In Proceedings of the 24th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems, page 85.
ACM, 2016.

[12] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,
and T. Darrell. Caffe: Convolutional architecture for fast feature embedding.
arXiv preprint arXiv:1408.5093, 2014.

[13] D. Kotzias, M. Denil, N. De Freitas, and P. Smyth. From group to individual
labels using deep features. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 597–606. ACM, 2015.

[14] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and D. McClosky.
The Stanford CoreNLP natural language processing toolkit. In Association for
Computational Linguistics (ACL) System Demonstrations, pages 55–60, 2014.

[15] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman,
D. Tsai, M. Amde, S. Owen, D. Xin, R. Xin, M. J. Franklin, R. Zadeh, M. Zaharia,
and A. Talwalkar. MLlib: Machine Learning in Apache Spark. Journal of Machine
Learning Research, 17(1):1235–1241, 2016.

[16] S. I. F. G. N. Nes and S. M. S. M. M. Kersten. Monetdb: Two decades of research
in column-oriented database architectures. Data Engineering, 40, 2012.

[17] K. W. Ong, Y. Papakonstantinou, and R. Vernoux. The SQL++ query language:
Configurable, unifying and semi-structured. arXiv preprint arXiv:1405.3631, 2014.

[18] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-
peau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[19] Redis. https://redis.io, 2009.
[20] A. Rheinländer, U. Leser, and G. Graefe. Optimization of complex dataflows with

user-defined functions. ACM Computing Surveys (CSUR), 50(3):38, 2017.
[21] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wyckoff,

and R. Murthy. Hive: a warehousing solution over a map-reduce framework.
Proceedings of the VLDB Endowment, 2(2):1626–1629, 2009.

[22] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark: Cluster
computing with working sets. HotCloud, 10(10-10):95, 2010.

http://zeppelin.apache.org
https://github.com/ninia/jep
https://redis.io

	Abstract
	1 Introduction
	2 Related Work
	3 Our Building Blocks
	3.1 Apache AsterixDB
	3.2 Machine Learning Platforms

	4 Machine Learning in AsterixDB
	4.1 The Lifecycle of Big Data Analytics
	4.2 Feature Extraction with AsterixDB
	4.3 Bringing Machine Learning to AsterixDB
	4.4 Utilizing Machine Learning in AsterixDB
	4.5 A Data Scientist Sandbox

	5 Illustrative Experiments
	5.1 Configurations
	5.2 Scale-out Experiment
	5.3 Speed-up Experiment

	6 Conclusion
	Acknowledgments
	References

